Planning & Development Act, 2000 - 2022, European Communities (Environmental Impact Assessment) Regulations 1989 (as amended), Planning & Development Regulations, 2001 (as amended)

ENVIRONMENTAL IMPACT ASSESSMENT REPORT APPENDICES

EdgeConneX Ireland Ltd.
Data Centre (DUB06)
Ballymakaily

August 2022

CONTENTS		Page
CHAPTER 2	DESCRIPTION OF THE PROPOSED DEVELOPMENT	1
Appendix 2.1	Proposed site layout plan (not to scale)	1
Appendix 2.2	Schedule of mitigation measures	2
CHAPTER 6	BIODIVERSITY	18
Appendix 6.1	Protected sites for Nature Conservation in the Vicinity	
-	of the Proposed Development	18
Appendix 6.2	Desk study Flora and Fauna records	22
Appendix 6.3	Examples of valuing important ecological features	25
Appendix 6.4	Flora Species List by Habitat	27
Appendix 6.5	Relevant Policies and objectives	28
CHAPTER 7	LAND, SOIL, GEOLOGY AND HYDROGEOLOGY	35
Appendix 7.1	Criteria for Rating Site Attributes – Estimation of Importance	35
	of Hydrogeological Attributes (NRA, 2009)	
Appendix 7.2	Lands at Ballymakaily – Ground Investigations	38
Appendix 7.3	Soil chemical test analysis results	95
CHAPTER 8	HYDROLOGY	103
Appendix 8.1	Criteria for rating Site Attributes - Estimation of Importance of Hydrology Attributes (NRA)	103
CHAPTER 9	NOISE AND VIBRATION	106
Appendix 9.1	Glossary of acoustic terminology	106
Appendix 9.2	Noise modelling details	108
Appendix 9.3	Indicative construction noise & vibration management plan	112
Appendix 9.4	Noise modelling details	116
Appendix 9.5	Modelling calculation parameters	120
CHAPTER 10	AIR QUALITY AND CLIMATE	121
Appendix 10.1	Description of the AERMOD model	121
Appendix 10.2	Description of AERMET	123
CHAPTER 11	LANDSCAPE AND VISUAL IMPACT	125
Appendix 11.1	Proposed Landscape Plan	125
Appendix 11.2	Tree survey	126
CHAPTER 13	CULTURAL HERITAGE	168
Appendix 13.1	Record of Monuments and Places	168
Appendix 13.2	Archaeological finds	171
Appendix 13.3	Previous excavations	172
Appendix 13.4	National Inventory of Architectural Heritage	196
Appendix 13.5	Archaeological figures	205
CHAPTER 14	WASTE MANAGEMENT	211
Appendix14.1	Outline Construction and Demolition Waste Management Plan	211

CHAPTER 2 DESCRIPTION OF THE PROPOSED DEVELOPMENT

Appendix 2.1 Proposed site layout plan (not to scale)

Appendix 2.2 Schedule of mitigation measures

Project Phase	Mitigation Measures			
	Biodiversity			
	The following mitigation measures will ensure there are no impacts on water quality in the immediate vicinity of the Proposed Development from release of hydrocarbons, polluting chemicals, sediment/silt and contaminated waters control during the construction stage of the Proposed Development and therefore no potential impacts on the downstream receiving water courses, <i>i.e.</i> the Griffeen River:			
Construction phase- Habitats and Flora – Water Quality Non- native invasive species	 Specific measures to prevent the release of sediment over baseline conditions to the existing surface water drainage network, during the construction work, which will be implemented as the need arises. These measures include, but are not limited to, the use of silt fences, silt curtains, settlement lagoons and filter materials. Provision of exclusion zones and barriers (e.g. silf fences) between earthworks, stockpiles and temporary surfaces to prevent sediment washing into the existing drainage systems and hence the downstream receiving water environment. Provision of temporary construction surface drainage and sediment control measures to be in place before earthworks commence. Weather conditions will be taken into account when planning construction activities to minimise risk of run-off from the site. Prevailing weather and environmental conditions will be taken into account prior to the pouring of cementitious materials for the works adjacent to any surface water drainage features, or drainage features connected to same. Pumped concrete will be monitored to ensure no accidental discharge Mixer washings and excess concrete will not be discharged to existing surface water drainage systems. Concrete washout areas will be located remote any surface water drainage features, where feasible, to avoid accidental discharge to watercourses. Washing out of any concrete trucks on site will be avoided (try brush shoots will be used instead). Any fuels of chemicals (including hydrocarbons or any polluting chemicals) will be stored in a designated, secure bunded area(s) to prevent any seepage of potential pollutants into the local surface water network. These designated areas will be clearly sign-posted and all personnel on site will be made aware of their locations and associated risks. All mobile fuel bowsers shall carry a spill kit and operatives must have spill response training. All fuel containing equipment such as portable generators shall be placed on d			

appointed contractor prior to excavation works commencing on site. These documents will detail how potentially contaminated material will be dealt with during the excavation phase. Implementation of measures to minimise waste and ensure correct handling, storage and disposal of waste (most notably wet concrete, pile arisings and asphalt). All of the above measures implemented on site will be monitored throughout the duration of construction to ensure that they are working effectively, to implement maintenance measures if required and applicable, and to address any potential issues that may arise. The landscape plans prepared for the EdgeConneX masterplan site (refer to Chapter 11 of Marston Planning Consultancy, 2021) which includes the current Proposed Development site will implement appropriate measures such as using plants of native origin in planting/meadows and by leaving unmanaged and/or enhanced areas for biodiversity in the wider area of the plan. To offset the loss of habitats within the masterplan area, the proposed landscape plans include the planting of native treelines and woody hedgerow species to fill in gaps in existing hedgerows/treelines in the northern buffer area (i.e. along the Grand Canal) of Construction phase the masterplan site, as well as the construction of a new pond wetland habitat in the north- Vegetation eastern corner of the masterplan site with wetland planting (c. 1.7ha). The planted hedgerow clearance species will mainly consist of Corylus avellana. Crataegus monogyna and Prunus avium. whilst the treelines will mainly consist of Alnus glutinosa. Betula pendula, Pinus sylvestris and Quercus petraea. The pond will be planted with Phragmites australis, Sparganium erectum and Typha latifolia, amongst other species. Any remaining hedgerows will be preserved, retained and protected in accordance with the arborist's report for the masterplan site and where feasible. Landscaping will also include extensive areas of wildflower hay meadow throughout the EdgeConnex masterplan site. Although no badger setts or signs of badger activity were recorded within the proposed development site, badger could potentially establish new setts within the ZoI of the proposed development. Therefore, a confirmatory pre-construction check of all suitable badger habitat will be completed within 12 months prior to any construction works commencing by a suitably experienced and qualified ecologist. The presence of any new setts or significant badger activity will be treated and/or protected in accordance with the Guidelines for the Treatment of Badgers prior to the Construction of Construction phase National Road Schemes (NRA, 2005). - Badgers, habitat If required, a licence permitting their filming to assess locations of activity and their subsequent loss removal should be applied for from the NPWS. Any active badger setts located within the development or 30m from the development must be safely closed with the use of one-way badger gates and (infra-red camera) monitoring to ensure that all badgers have left the sett(s) and that it is no longer occupied, prior to sett removal. Any sett closing works shall be undertaken between the months of July to November inclusive (to avoid peak breeding season for this species and therefore avoid risk of disturbance to or mortality of cubs), in advance of site clearance and construction works commencing. Mitigation measures outlined above in "Mitigation Measures - Habitats and Flora" for the Construction phase protection of water quality in the downstream receiving water courses, i.e. Griffeen River, and - Otter, Water its immediate environs will mitigate against impacts of water pollution on the prey availability of quality otter during Construction Phase. During construction, any external lighting to be installed, including facilitating night-time working or security lighting, on the site shall be sensitive to the presence of bats in the area, downlighting, and time limited where possible. Lighting of sensitive wildlife areas and primary ecological corridors (e.g. Grand Canal and retained hedgerows in the immediate vicinity to the Proposed Development) and light pollution in general should be avoided. Lighting of the site during construction is designed in accordance with the following guidance: Construction phase Guidance Notes for the Reduction of Obtrusive Light GN01 (Institute of Lighting - bats, lighting Professionals, 2020) Bats & Lighting - Guidance Notes for Planners, Engineers, Architects and Developers (Bat Conservation Ireland, December 2010) Bats and Lighting in the UK - Bats and the Built Environment Series (Bat Conservation Trust UK, January 2018).

It will be ensured in liaison with the suitably experienced and qualified ecologist that lighting at

the construction compound, and active work areas within and adjacent to the proposed development, will be designed to minimise light spill outside the footprint of the proposed development, and be cognisant of light-spill into previously unlit areas. Any light spill to commuting/foraging habitats of bats may exclude them from using these areas and therefore have a negative impact on them through reduced food resources and/or longer flight routes as they try to avoid flying through the lit-up area by flying around it.

Mitigation measures to reduce light spill during construction will include the following:

- · the use of sensor/timer triggered lighting;
- LED luminaires to be used where possible due to their sharp cut-off, lower intensity, good colour rendition and dimming capability;
- · column heights to be considered to minimise light spill;
- accessories such as baffles, hoods or louvres can be used to reduce light spill and direct it
 only where needed; and,
- Where night-time works are required the suitably experienced and qualified ecologist will be liaised with to implement measures to mitigate the impact of such works.

The following mitigation measures are proposed to comply with the legal protection afforded to breeding birds and their nests under the Wildlife Acts:

Construction phase – Birds

 In order to avoid disturbance or harm to breeding birds, their nests, eggs and/or their unflown young, all works involving the removal of trees, hedgerows or grasslands will be undertaken outside of the nesting season (i.e. 1 March to 31 August inclusive);

or where this seasonal restriction cannot be observed then:

A breeding bird survey will be undertaken by a suitably experienced ecologist in order to
assess whether birds are nesting within suitable habitat affected by or immediately
adjacent to the proposed works. Should nesting birds be encountered during surveys, it
may be necessary to delay the removal of trees, hedgerows or grasslands until after the
nesting season (i.e. 1 March to 31 August inclusive), or until the chicks have fully fledged.

Construction phase – common frogs and lizards

No significant effects on common frogs or lizards are predicted during the Construction Stage of the proposed development, therefore no mitigation is required.

Construction phase – fish, fresh water white clawed crayfish and other aquatic species water quality

surface water

Mitigation measures outlined above in "Mitigation Measures – Habitats and Flora" for the protection of water quality in the downstream receiving water courses, *i.e.* Griffeen River, and its immediate environs will mitigate against impacts of water pollution on fish and freshwater white-clawed crayfish and other aquatic species during Construction Phase.

Operational phase –

The proposed drainage system for the site has been designed in accordance with Greater Dublin Strategic Design System (GDSDS) specifications. The drainage system will include a Stormtech attenuation system or similar. Roof water will be directed into an onsite reticulation system which will drain, along with road run-off, into the attenuation ponds which are to be located to the north of the site. A Hydrobrake will also be installed at the outflow to reduce the ultimate discharge.

Pinnacle have identified that the above storm water drainage systems will accommodate a 1:2 year storm frequency. The attenuation system is also designed to accommodate a 1:100 year storm event accounting for a 20% increase with climate change.

Due to a variety of measures such as the design of the attenuation system with hydrocarbon interceptors, the speed restrictions in place and the fact that no refuelling will be carried out on site (when practicable), the likelihood of any spills entering the water environment from vehicles on site is negligible.

Run-off from the car park areas and access roads/delivery areas will be drained following these options:

 A series of on-site gullies and channels draining into a separate system of below ground gravity storm water sewers; and,

	A Duraflow (or similar approved), porous asphalt product. To minimise any impact from material spillages, all oils, solvents, paints and fuels to be stored onsite will be stored within permanently bunded areas and each of these areas will be bunded to a volume of 110% of the capacity of the largest tank/container within it (plus an allowance of 30 mm for rainwater ingress). Drainage from the bunded area(s) will be diverted for collection and safe disposal.
Operational phase – foul water	In their Engineering Planning Report Pinnacle have proposed to discharge foul water from the proposed development, via a 225mm diameter gravity foul sewer outfall and discharge into the existing 450mm diameter connection. The increase in flow to the existing public foul sewer is not expected to have a negative effect on the foul drainage system in the area.
Operational phase – bats, lighting	 The Lighting design for the site during operation is designed in accordance with the following guidance: Guidance Notes for the Reduction of Obtrusive Light GN01 (Institute of Lighting Professionals, 2020) Bats & Lighting - Guidance Notes for Planners, Engineers, Architects and Developers (Bat Conservation Ireland, December 2010) Bats and Lighting in the UK – Bats and the Built Environment Series (Bat Conservation Trust UK, January 2018). Adhering with these guidelines ensures sensitive siting and design of the lighting elements and will include careful consideration of light placement on buildings, column heights and luminaire design. The following recommendations based on the above guidance have been considered in relation to the detailed construction and operational lighting design, and have been reviewed by a suitably qualified and experienced ecologist: All pole mounted columns will be 5m high – located facing away from boundaries to minimise any light spill beyond the area to be illuminated; The fittings have a sharp cut off with no upward light spill to minimise any resultant sky glow; and All fittings selected will be LED selected with a lighting output spectrum which is appropriate for bat sensitive areas. These are in adherence with the guidance presented in relation to bats and lighting previously in this Chapter.
Operational phase – birds	No significant effects on breeding birds and/or wintering non-SCI birds are predicted during the Operational Phase of the proposed development, therefore no mitigation is required.
Operational phase - common frogs and lizards	No significant effects on common frog or lizards are predicted during the Operational Phase of the proposed development, therefore no mitigation is required.
Operational phase – fish, fresh water white clawed crayfish and other aquatic species - water quality	No significant effects on fish, fresh water white clawed crayfish terrestrial invertebrates are predicted during the Operational Stage of the proposed development, therefore no mitigation is required.
	Land, soil, geology and hydrogeology
Construction phase – Soil removal and compaction	Reuse of excavated soil on site and capping with hardstand will minimise any increase in aquifer vulnerability. Construction works will require local removal of soil cover where levelling of the site is required and its use for re-instatement elsewhere on site. According to the GSI database the bedrock vulnerability is already extreme due to the thin cover of overburden on the site, removal of soil cover will increase the vulnerability of the underlying bedrock. However

due to levelling works imported fill will need to be deposited over a sizable proportion of the proposed development area. Overall vulnerability would not alter across the site. It is envisaged that any soil excavated will be retained on site and reused as fill material or landscaping.

Temporary storage of soil will be carefully managed in such a way as to prevent any potential negative impact on the receiving environment and the material will be stored away from any open surface water drains. Movement of material will be minimised in order to reduce degradation of soil structure and generation of dust.

Although there is no evidence of historical contamination in the proposed development area, all excavated materials will be visually assessed for signs of possible contamination such as staining or strong odours. Should any unusual staining or odour be noticed, samples of this soil will be analysed for the presence of possible contaminants in order to ensure that historical pollution of the soil has not occurred. Should it be determined that any of the soil excavated is contaminated, this will be disposed of by a licensed waste disposal contractor.

To minimise any impact on the underlying subsurface strata from material spillages, all oils, solvents and paints used during construction will be stored within temporary bunded areas. Oil and fuel storage tanks shall be stored in designated areas, and these areas shall be bunded to a volume of 110% of the capacity of the largest tank/container within the bunded area(s) (plus an allowance of 30 mm for rainwater ingress). Drainage from the bunded area(s) shall be diverted for collection and safe disposal.

Construction phase – Fuel and chemical handling

Refuelling of construction vehicles and the addition of hydraulic oils or lubricants to vehicles will take place in a designated area (or where possible off the site) which will be away from surface water gulleys or drains. In the event of a machine requiring refuelling outside of this area, fuel will be transported in a mobile double skinned tank. An adequate supply of spill kits and hydrocarbon adsorbent packs will be stored in this area. All relevant personnel will be fully trained in the use of this equipment. Guidelines such as "Control of Water Pollution from Construction Sites, Guidance for Consultants and Contractors" (CIRIA 532, 2001) will be complied with.

Where feasible all ready-mixed concrete will be brought to site by truck. A suitable risk assessment for wet concreting will be completed prior to works being carried out which will include measures to prevent discharge of alkaline wastewaters or contaminated storm water to the underlying subsoil. Wash down and washout of concrete transporting vehicles will take place at an appropriate facility offsite.

In the case of drummed fuel or other chemical which may be used during construction, containers should be stored in a dedicated internally bunded chemical storage cabinet and labelled clearly to allow appropriate remedial action in the event of a spillage.

A Construction Environmental Management Plan (CEMP) has been developed by Winthrop Engineering and Contracting Limited and included with the application documentation. This will be refined by the Applicant and the construction contractor prior to commencement of construction. The CEMP will incorporate the mitigation measures outlined above as they relate to the construction phase. The CEMP will include emergency response procedures in the event of a spill, leak, fire or other environmental incident related to construction. This is an active document which is continuously updated to manage risk during the construction programme. All relevant personnel working on the site will be trained in the implementation of the procedures.

Construction phase – CEMP

As a minimum, the CEMP will be formulated in accordance with best international practice including but not limited to:

- CIRIA, (2001), Control of Water Pollution from Construction Sites, Guidance for Consultants and Contractors;
- Construction Industry Research and Information Association (CIRIA) Environmental Good Practice on Site (C650), 2005;
- BPGCS005, Oil Storage Guidelines;
- Eastern Regional Fisheries Board, (2006), Fisheries Protection Guidelines: Requirements for the Protection of Fisheries Habitat during Construction and Development Works at River Sites:
- · CIRIA 697, The SUDS Manual, 2007; and
- UK Pollution Prevention Guidelines (PPG) UK Environment Agency, 2004.

Operational phase – Fuel and chemical handling

In order to minimise any impact on the underlying subsurface strata from material spillages, each generator will be installed in an externally rated container with a self-contained belly tank (steel double wall type for leak containment and inner tank leak alarm system) with 48 hours diesel fuel storage capacity at full load.

Any chemicals, oils, herbicides required for site maintenance will be stored in suitable contained areas. As the site will be paved any accidental emissions from fuel spills or contaminated runoff will be directed through the surface water drainage system through oil interceptors prior to discharge to the proposed attenuation tank onsite rather than infiltrate directly to ground.

Operational phase – Environmental Plan

An environmental management plan will be prepared and followed during the operational phase incorporating mitigation measures and emergency response measures.

Hydrology

The design of the proposed development has taken account of the potential impacts of the development and the risks to the water environment local to the area where construction is taking place. Measures have been developed to mitigate the potential effects on the local water environment. These measures seek to avoid or minimise potential effects in the main through the implementation of best practice construction methods and adherence to all relevant legislation.

These measures are part of the requirements under the Greater Dublin Strategic Drainage Study and South Dublin County Council. They are not intended to avoid or reduce any potential harmful effects to any European sites, since there is no potential impact on Dublin Bay, given the potential contaminant load chemical and the distance from source to the bay (c. 20 km).

A Construction Environmental Management Plan (CEMP) has been developed by Winthrop Engineering and Contracting Limited and included with the application documentation. This will be refined by the Applicant and the construction contractor prior to commencement of construction. The CEMP will incorporate the mitigation measures outlined above as they relate to the construction phase. The CEMP will include emergency response procedures in the event of a spill, leak, fire or other environmental incident related to construction. This is an active document which is continuously updated to manage risk during the construction programme. All relevant personnel working on the site will be trained in the implementation of the procedures.

Construction phase - CEMP

As a minimum, the CEMP will be formulated in accordance with best international practice including but not limited to:

- CIRIA, (2001), Control of Water Pollution from Construction Sites, Guidance for Consultants and Contractors;
- Construction Industry Research and Information Association (CIRIA) Environmental Good Practice on Site (C650), 2005;
- · BPGCS005, Oil Storage Guidelines;
- Eastern Regional Fisheries Board, (2006), Fisheries Protection Guidelines: Requirements for the Protection of Fisheries Habitat during Construction and Development Works at River Sites;
- · CIRIA 697, The SUDS Manual, 2007; and
- UK Pollution Prevention Guidelines (PPG) UK Environment Agency, 2004.

Pinnacle Consulting Engineers have outlined mitigation measures for the site in their Engineering Planning Report. The following mitigation measures include, but are not limited to, those provided in that report and are designed to address the impacts associated with the construction and operational phase of the project. Due to the inter-relationship between this section and Chapter 7 (Land, Soils, Geology and Hydrogeology) the following mitigation measures discussed will be considered applicable to both.

Construction phase - Increased run-off and sediment loading

During the construction phase any drains carrying a high sediment load will be diverted through the settlement ponds. The settlement ponds will be located between the area of construction and the nearest field drain. Surface water runoff will not be discharged directly to local watercourses. The following mitigation measures will be adopted:

- the drainage system and settlement ponds will be constructed as a first step;
- any excavations required will remain open for as little time as possible before the placement of fill. This will help to minimise potential for groundwater ingress into excavations;
- silt traps will be placed in the existing drainage network around the site to minimise silt loss. These should be inspected and cleaned regularly.

weather conditions will be considered when planning construction activities to minimise risk of run off from the site: and distance between topsoil piles etc. and streams will be maintained - to protect from dampening operations. To minimise any impact on the underlying subsurface strata from material spillages, all oils, solvents, paints and fuels used during construction will be stored within temporary bunded areas and each of these areas will be bunded to a volume of 110% of the capacity of the largest tank/container within it (plus an allowance of 30 mm for rainwater ingress). Filling and draw-off points will be located entirely within the bunded area(s). Drainage from the bunded area(s) will be diverted for collection and safe disposal. Wet concrete operations adjacent to watercourses will be avoided where possible. A suitable risk assessment for wet concreting will be completed prior to works being carried out which will include measures to prevent discharge of alkaline wastewaters or contaminated storm water to groundwater. The contractor will be required to make provision for removal of any concrete wash waters, most likely by means of tankering off-site and no such wash waters will be discharged to groundwater. Any effluent generated by temporary onsite sanitary facilities will be taken off-Construction phase site for appropriate treatment. - Contamination of Re-fuelling of construction equipment and the addition of hydraulic oil or lubricants to vehicles/ local water courses equipment will take place in designated bunded areas where possible. Re-fuelling will be avoided in so far as possible at the other work sites but where necessary will take place within appropriately bunded areas. If it is not possible to bring a machine to the refuelling point, fuel will be delivered in a doubleskinned mobile fuel bowser. A drip tray will be used beneath the fill point during refuelling operations in order to contain any spillages that may occur. The vehicles and equipment will not be left unattended during refuelling. Spill kits and hydrocarbon absorbent packs will be stored in the cab of each vehicle and operators will be fully trained in the use of this equipment. The generation of runoff from stockpiles of soils, excavated during construction, will be prevented from entering watercourses by diverting runoff to the settlement ponds on site, and removing the material off-site as soon as possible to designated storage areas. The proposed drainage system for the site in outlined in Pinnacle's Engineering Planning Report and has been designed in accordance with Greater Dublin Strategic Design System (GDSDS) specifications. Roof water will be directed into an onsite reticulation system which Operational phase will drain, along with road run-off, into the attenuation ponds which are to be located to the Increased surface north of the proposed data cetres. A hydrobrake will also be installed at the outflow to reduce water run-off the ultimate discharge. The attenuation system is designed to accommodate a 1:100 year storm event accounting for a 20% increase with climate change. Due to a variety of measures such as the design of the attenuation system with hydrocarbon interceptors, the speed restrictions in place and the fact that no refuelling will be carried out on site (when practicable), the likelihood of any spills entering the water environment from vehicles on site is negligible. Run-off from the car park areas and access roads / delivery areas will be drained following these options: Operational phase -A series of on-site gullies and channels draining into a separate system of below ground Contamination of gravity storm water sewers; surface water A Duraflow (or similar approved), porous asphalt product. To minimise any impact from material spillages, all oils, solvents, paints and fuels to be stored onsite will be stored within permanently bunded areas and each of these areas will be bunded to a volume of 110% of the capacity of the largest tank/container within it (plus an allowance of 30 mm for rainwater ingress). Drainage from the bunded area(s) will be diverted for collection and safe disposal. In their Engineering Planning Report Pinnacle have proposed to discharge foul water from the Operational phase proposed development, via a 225mm diameter gravity foul sewer outfall and discharge into the Foul water existing 450mm diameter connection. The increase in flow to the existing public foul sewer is not expected to have a negative effect on the foul drainage system in the area. Operational phase -The water system will be metered to facilitate detection of leakage and the prevention of water Water supply loss. Dual & low flush toilets and water economy outlets and water saving measures will also

	be proposed.	
	Noise and vibration	
Construction – Noise and vibration	With regard to construction activities, reference will be made to BS5228 Parts 1 and 2, which offer detailed guidance on the control of noise and vibration from demolition and construction activities. Various mitigation measures will be considered and applied during the construction of the proposed development. Specific examples of such measures are: Ilimiting the hours during which site activities likely to create high levels of noise or vibration are permitted; establishing channels of communication between the contractor/developer, Local Authority and residents; appointing a site representative responsible for matters relating to noise and vibration; monitoring levels of noise and/or vibration during critical periods and at sensitive locations; and all site access roads will be kept even so as to mitigate the potential for vibration from lorries. Furthermore, it is envisaged that a variety of practicable noise control measures will be employed. These may include: selection of plant with low inherent potential for generation of noise and/or vibration; erection of barriers as necessary around items such as generators or high-duty compressors; situate any noisy plant as far away from sensitive properties as permitted by site constraints and the use of vibration-isolated support structures where necessary. It is recommended that vibration from construction activities to off-site residences be limited to the values set out in Table 9.6. It should be noted that these limits are not absolute, but provide guidance as to magnitudes of vibration that are very unlikely to cause cosmetic damage. Magnitudes of vibration slightly greater than those in the table are normally unlikely to cause cosmetic damage, but construction work creating such magnitudes should proceed with caution. Where there is existing damage these limits may need to be reduced by up to 50%.	
Operational phase - Building services noise / emergency site operation	Noise from external plant will be minimised by purchasing low noise generating equipment and incorporating appropriately specified in line attenuators for stacks and exhausts where necessary. With due consideration as part of the detailed design process, this approach will result in the site operating well within the constraints of the best practice guidance noise limits that have been adopted as part of this detailed assessment.	
Operational phase - Additional vehicular traffic on public roads	The noise impact assessment outlined previously has demonstrated that mitigation measures are not required.	
Operational phase – Noise and human health	Guidelines for construction and operational phase: Noise criteria are provided by relevant bodies with consideration of the likely impact of noise on human health. The construction phase is short-term and therefore any elevated levels of noise will be of limited duration and, as a result, are not expected to pose any risk to human health. In terms of the noise exposure of construction workers and potential hearing damage that may be caused due to exposure to high levels of noise, the Safety, Health and Welfare at Work (General Application) Regulations 2007 (Statutory Instrument No. 299 of 2007) provides guidance in terms of allowable workplace noise exposure levels for employees. The Regulations specify two noise Action Levels at which the employer is legally obliged to reduce the risk of exposure to noise. The appointed contractor will be required to comply with the Regulations and provide appropriate noise exposure mitigation measures where necessary. No significant noise impacts are expected from the operational phase of the proposed development. As such, there is no anticipated risk of long-term exposure to noise on human health resulting from the proposed development.	
Construction phase –Climate	Air quality and climate Construction vehicles, generators etc., may give rise to some CO ₂ and N ₂ O emissions. However, due to short-term and temporary nature of these works the impact on climate will not be significant.	

Construction phase – Air Quality

The objective of dust control at the site is to ensure that no significant nuisance occurs at nearby sensitive receptors. In order to develop a workable and transparent dust control strategy, the following management plan has been formulated by drawing on best practice guidance from Ireland and the UK (IAQM (2014), The Scottish Office (1996), UK Office of Deputy Prime Minister (2002) and BRE (2003)) and the USA (USEPA (1997)).

The aim is to ensure good site management by avoiding dust becoming airborne at source. This will be done through good design and effective control strategies.

At the construction planning stage, the siting of activities and storage piles will take note of the location of sensitive receptors and prevailing wind directions in order to minimise the potential for significant dust nuisance (see Figure 10.1 for the windrose for Casement Aerodrome). As the prevailing wind is predominantly south-westerly, locating construction compounds and storage piles downwind (to the north-east) of sensitive receptors will minimise the potential for dust nuisance to occur at sensitive receptors.

Good site management will include the ability to respond to adverse weather conditions by either restricting operations on-site or quickly implementing effective control measures before the potential for nuisance occurs. When rainfall is greater than 0.2 mm/day, dust generation is generally suppressed (UK Office of Deputy Prime Minister (2002), BRE (2003)). The potential for significant dust generation is also reliant on threshold wind speeds of greater than 10 m/s (19.4 knots) (at 7m above ground) to release loose material from storage piles and other exposed materials (USEPA, 1986). Particular care should be taken during periods of high winds (gales) as these are periods where the potential for significant dust emissions are highest. The prevailing meteorological conditions in the vicinity of the site are favourable in general for the suppression of dust for a significant period of the year. Nevertheless, there will be infrequent periods were care will be needed to ensure that dust nuisance does not occur. The following measures should be taken in order to avoid dust nuisance occurring under unfavourable meteorological conditions:

Construction phase – site management

- The Principal Contractor or equivalent must monitor the contractors' performance to ensure that the proposed mitigation measures are implemented and that dust impacts and nuisance are minimised;
- During working hours, dust control methods will be monitored as appropriate, depending on the prevailing meteorological conditions;
- The name and contact details of a person to contact regarding air quality and dust issues shall be displayed on the site boundary, this notice board should also include head/regional office contact details:
- It is recommended that community engagement be undertaken before works commence on site explaining the nature and duration of the works to local residents and businesses;
- A complaints register will be kept on site detailing all telephone calls and letters of complaint received in connection with dust nuisance or air quality concerns, together with details of any remedial actions carried out;
- It is the responsibility of the contractor at all times to demonstrate full compliance with the dust control conditions herein; and
- At all times, the procedures put in place will be strictly monitored and assessed.

The dust minimisation measures shall be reviewed at regular intervals during the works to ensure the effectiveness of the procedures in place and to maintain the goal of minimisation of dust through the use of best practice and procedures. In the event of dust nuisance occurring outside the site boundary, site activities will be reviewed and satisfactory procedures implemented to rectify the problem. Specific dust control measures to be employed are described below.

Construction – site roads / haulage routes

Movement of construction trucks along site roads (particularly unpaved roads) can be a significant source of fugitive dust if control measures are not in place. The most effective means of suppressing dust emissions from unpaved roads is to apply speed restrictions. Studies show that these measures can have a control efficiency ranging from 25 to 80% (UK Office of Deputy Prime Minister, 2002).

- A speed restriction of 20 km/hr will be applied as an effective control measure for dust for on-site vehicles using unpaved site roads;
- Access gates to the site shall be located at least 10m from sensitive receptors where possible;
- Bowsers or suitable watering equipment will be available during periods of dry weather

	throughout the construction period. Research has found that watering can reduce dust emissions by 50% (USEPA, 1997). Watering shall be conducted during sustained dry periods to ensure that unpaved areas are kept moist. The required application frequency will vary according to soil type, weather conditions and vehicular use; and • Any hard surface roads will be swept to remove mud and aggregate materials from their surface while any unsurfaced roads shall be restricted to essential site traffic only.
Construction phase – Land clearing / earth moving	 Land clearing / earth-moving works during periods of high winds and dry weather conditions can be a significant source of dust. During dry and windy periods, and when there is a likelihood of dust nuisance, watering shall be conducted to ensure moisture content of materials being moved is high enough to increase the stability of the soil and thus suppress dust; and During periods of very high winds (gales), activities likely to generate significant dust emissions should be postponed until the gale has subsided.
Construction phase - storage piles	 The location and moisture content of storage piles are important factors which determine their potential for dust emissions. Overburden material will be protected from exposure to wind by storing the material in sheltered regions of the site. Where possible storage piles should be located downwind of sensitive receptors; Regular watering will take place to ensure the moisture content is high enough to increase the stability of the soil and thus suppress dust. The regular watering of stockpiles has been found to have an 80% control efficiency (UK Office of Deputy Prime Minister, 2002); and Where feasible, hoarding will be erected around site boundaries to reduce visual impact. This will also have an added benefit of preventing larger particles from impacting on nearby sensitive receptors.
Construction phase – Site traffic on public roads	Spillage and blow-off of debris, aggregates and fine material onto public roads should be reduced to a minimum by employing the following measures: • Vehicles delivering or collecting material with potential for dust emissions shall be enclosed or covered with tarpaulin at all times to restrict the escape of dust; and • In addition, public roads outside the site shall be regularly inspected for cleanliness, as a minimum on a daily basis, and cleaned as necessary.
Construction phase – Dust mitigation	 The pro-active control of fugitive dust will ensure that the prevention of significant emissions, rather than an inefficient attempt to control them once they have been released, will contribute towards the satisfactory performance of the contractor. The key features with respect to control of dust will be: The specification of a site policy on dust and the identification of the site management responsibilities for dust issues; The development of a documented system for managing site practices with regard to dust control; The development of a means by which the performance of the dust minimisation plan can be regularly monitored and assessed; The specification of effective measures to deal with any complaints received.
Operational phase – Air Quality	The standby diesel generators have been designed in an iterative fashion to ensure that an adequate height was selected to aid dispersion of the plume. Provided each standby diesel generator flue stack is built to a height of 25m above local ground level and based on the site layout modelled and hours of operation, the air impact assessment has demonstrated that <i>mitigation measures are not required</i> . Under the previous permission similarly the stack heights of the gas generators were designed in an iterative fashion to ensure that an adequate height was selected to aid dispersion of the plume. Provided each gas generator flue stack is built to a height of 25m above local ground level, as per its permission, and based on the site layout modelled, the air impact assessment has demonstrated that mitigation measures are not required.
Operational phase - Climate	On-site emissions of greenhouse gases will mainly derive from the permitted gas generators with infrequent standby emissions due to the diesel generators. However, the emissions from the gas generators will form part of the EU-wide Emission Trading Scheme (ETS) and thus

greenhouse gas emission from onsite electricity generation are not included when determining compliance with the targeted 42% reduction in the non-ETS sector. In addition, gas generators have the lowest greenhouse gas emission rate of any fossil fuel. Landscape and visual assessment The mitigation of potential negative landscape and visual impacts has influenced the design and layout of the scheme from the beginning of the design process (refer to Landscape Mitigation Drawing). As a result, the following landscape design mitigation measures have earth modelling and large tree planting reinforced with woodland whip planting in belts is proposed to provide a high level of visual screening of the most sensitive views of the Operational - visual development; the creation of a wetland and woodland habitat in a buffer zone between the canal and the impact built development and provision of public access to some of these habitats; the colour palette chosen for the building aims to further reduce any visual impact of the building; and Green walls are proposed to the south and east that will enclose the water tower and pump house compound. Traffic and transportation The Construction Management Plan prepared by Winthrop incorporates a range of integrated control measures and associated management initiatives with the objective of mitigating the impact of the proposed developments on-site construction activities. To minimise disruption to the surrounding environment, the following mitigation measures will be implemented: During the pre-construction phase, the site will be securely fenced off from adjacent properties, public footpaths and roads. All road works will be adequately signposted and enclosed to ensure the safety of all road users and construction personnel. A dedicated 'construction' site access / egress junction will be provided during all construction phases. This will coincide with the overall site access/ Provision of sufficient on-site parking and compounding to ensure no potential overflow of construction generated traffic onto the local network. Site offices and compound will be located within the site boundary. The site will be able to accommodate employee and visitor parking throughout the construction period through the construction of temporary hardstanding areas. A material storage zone will also be provided in the compound area. This storage zone will include material recycling areas and facilities. A series of 'way finding' signage will be provided to route staff / deliveries into the site and to designated compound / construction areas. Dedicated construction haul routes will be identified and agreed with the local authority prior to the commencement of constructions activities on-site. Construction - CMP Truck wheel washes will be installed at construction entrances if deemed necessary and any specific recommendations with regard to construction traffic management made by the Local Authority will be adhered to. On completion of the works all construction materials, debris, temporary hardstands etc. from the site compound will be removed off site and the site compound area reinstated in full on completion of the works. All construction related parking will be provided on site. Construction traffic will consist of the following two principal categories: Private vehicles owned and driven by site construction staff and by full time supervisory staff; Excavation plant and dumper trucks involved in site development works and material delivery vehicles for the following: granular fill materials, concrete pipes, manholes, reinforcement steel, ready mix concrete and mortar, concrete blocks, miscellaneous building materials, etc. It is anticipated that the generation of HGV's during the construction period will be evenly spread throughout the day and as such will not impact significantly during the peak traffic periods. Operational - traffic The Adamstown Road (R120) and Nangor Road (R134) Improvement Scheme provides

and transportation

suitable infrastructure and transport services for travel by sustainable modes. A key barrier to modal shift towards sustainable modes of travel is often a lack of information about potential alternatives to the car. As such, it is proposed that staff at the data centre are made aware of potential alternatives including information on walking, cycle routes and public transport.

The local area provides suitable infrastructure and transport services for travel by sustainable modes. A key barrier to modal shift towards sustainable modes of travel is often a lack of information about potential alternatives to the car. As such, it is proposed that staff and visitors of the proposed development are made aware of potential alternatives including information on walking, cycle routes and public transport.

A number of walking and cycling connection points are proposed within the development. These connection points will provide access for pedestrians and cyclists onto the R120. These facilities will provide attractive, convenient and safe routes for staff & visitors. Therefore, there are good links proposed for staff to travel by more sustainable modes.

It is proposed to provide car parking that will meet the expected-on site demand. The marketing of new pedestrian & cyclists routes along with public transport information will further reinforce the efforts been made towards a modal shift away from car-based trips.

The local area provides suitable infrastructure and transport services for travel by sustainable modes. A key barrier to modal shift towards sustainable modes of travel is often a lack of information about potential alternatives to the car. As such, it is proposed that staff and visitors of the proposed development are made aware of potential alternatives including information on walking, cycle routes and public transport. A Mobility Management Plan will be developed and implemented within six months of the commencement of the operation of the proposed development. This should be undertaken collaboratively with the permitted data centres already granted on this site. It is anticipated that this measure may help to reduce the level of traffic at the proposed development, thus providing mitigation against the already minimal traffic and transport effects of the development.

Cultural heritage

A programme of licensed archaeological monitoring will be agreed with the National Monuments Service of the Department of Culture, Heritage and the Gaeltacht, for areas not previously subjected to archaeological testing.

A report outlining the results of the programme of archaeological monitoring will be prepared and will include a detailed method statement for any archaeological excavation of features identified, agreed in advance with the National Monuments Service of the Department of Culture, Heritage and the Gaeltacht. The report will include a schedule of works detailing timeframes, personnel and logistical requirements.

Construction phase - Archaeology

Any areas that require archaeological excavation will be cordoned off to facilitate the archaeological team to carry out the excavations. A buffer zone will be agreed with National Monuments Service and no construction works will be undertaken in these areas until archaeological excavations have been completed.

Provision has been made for all costs associated with archaeological testing, any required excavations and reporting of the results to the standards required by the National Monuments Service of the Department of Culture, Heritage and the Gaeltacht. The remedial or reductive mitigation measures outlined here are subject to the approval of the National Monuments Service of the Department of Culture, Heritage and the Gaeltacht.

Operational phase – cultural heritage

No remedial or reductive measures are considered necessary during the operational phase of the proposed development, as the operational phase will not give rise to any adverse impacts.

Waste management

Construction – C&D WMP

As previously stated, a project specific RWMP has been prepared in line with the requirements of the requirements of the EPA, Best Practice Guidelines for the Preparation of Resource and Waste Management Plans for Construction & Demolition Projects' (2021) and is included as Appendix 14.1. The mitigation measures outlined in the RWMP will be implemented in full and form part of mitigation strategy for the site. The mitigation measures presented in this RWMP will ensure effective waste management and minimisation, reuse, recycling, recovery and disposal of waste material generated during the excavation and construction phases of the Proposed Development. Prior to commencement, the appointed Contractor(s) will be required to refine / update the RWMP (Appendix 14.1) in agreement with SDCC and in compliance with any planning conditions, or submit an addendum to the RWMP to SDCC, detailing specific measures to minimise waste generation and resource consumption, and provide details of the proposed waste contractors and destinations of each waste stream. The Contractor will implement the RWMP throughout the duration of the proposed excavation and construction

phases.

The project engineers (Pinnacle) estimated that c. 11,300m³ of topsoil and 18,800m³ of subsoil will be excavated. It is currently proposed that all of this excavated material will be reused on site, wherever possible, for berms and other landscaping purposes. Surplus material that is not required for reuse onsite, will be reused or recovered off-site insofar as is reasonably practicable. Where there is no suitable reuse or recovery option available, it will be disposed of at an authorised facility.

n addition, the following mitigation measures will be implemented:

- · Building materials will be chosen with an aim to 'design out waste';
- On-site segregation of waste materials will be carried out to increase opportunities for offsite reuse, recycling and recovery – it is anticipated that the following waste types, at a minimum, will be segregated:
 - Concrete rubble (including ceramics, tiles and bricks);
 - Plasterboard;
 - Metals;
 - Glass; and
 - Timber.
- Left over materials (e.g. timber off-cuts, broken concrete blocks/bricks) and any suitable construction materials shall be re-used on-site, where possible;
- All waste materials will be temporarily stored in skips or other suitable receptacles in designated areas of the site;
- Any hazardous wastes generated (such as chemicals, solvents, glues, fuels, oils) will also be segregated and will be stored in appropriate receptacles (in suitably bunded areas, where required);
- A person responsible for waste management will be appointed by the main contractor(s) to
 ensure effective management of waste during the excavation and construction works;
- All construction staff will be provided with training regarding the waste management procedures;
- All waste leaving site will be reused, recycled or recovered where possible to avoid material designated for disposal;
- All waste leaving the site will be transported by suitable permitted contractors and taken to suitably registered, permitted or licensed facilities; and
- All waste leaving the site will be recorded and copies of relevant documentation maintained.

Nearby sites requiring clean fill material will be contacted to investigate reuse opportunities for clean and inert material, if required. If any of the material is to be reused on another site as by-product (and not as a waste), this will be done in accordance with regulation 15 (previously Article 27) of S.I. No. 323/2020 - European Union (Waste Directive) Regulations 2020. EPA approval will be obtained prior to moving material as a by-product.

These mitigation measures will ensure that the waste arising from the construction phase of the Proposed Development is dealt with in compliance with the provisions of the Waste Management Act 1996, as amended, associated Regulations and the Litter Pollution Act 1997, and the EMR Waste Management Plan 2015 – 2021. It will also ensure optimum levels of waste reduction, reuse, recycling and recovery are achieved and will promote more sustainable consumption of resources.

All waste materials will be segregated into appropriate categories and will be temporarily stored in appropriate bins or other suitable receptacles in a designated, easily accessible areas on the site. In addition, the following mitigation measures will be implemented:

- On-site segregation of all waste materials into appropriate categories including (but not limited to):
 - Dry Mixed Recyclables;
 - Organic food/green waste;
 - Mixed Non-Recyclable Waste:
 - Batteries (non-hazardous and hazardous);
 - Waste electrical and electronic equipment (WEEE) including computers, printers and other ICT equipment; and
 - Cleaning chemicals (solvents, pesticides, paints, adhesives, resins, detergents, etc.).
- All waste materials will be stored in colour coded bins or other suitable receptacles in designated, easily accessible locations. Bins will be clearly labelled with the approved waste type to ensure there is no cross contamination of waste materials;
- All waste collected from the development will be reused, recycled or recovered where
 possible, with the exception of those waste streams where appropriate facilities are

Operational - Waste

currently not available; All waste leaving the site will be transported by suitable permitted contractors and taken to suitably registered, permitted or licensed facilities; and All waste leaving the site will be recorded and copies of relevant documentation maintained. These mitigation measures will ensure the waste arising from the development is dealt with in compliance with the provisions of the Waste Management Act 1996, as amended, associated Regulations, the Litter Pollution Act 1997 and the EMR Waste Management Plan (2015 2021). It will also ensure optimum levels of waste reduction, reuse, recycling and recovery are achieved. **Material assets** Construction of the Proposed Development will require connections to water supply and drainage infrastructure, power and telecommunications. Ongoing consultation with SDCC, Construction -Irish Water, Eirgrid, ESB and other relevant service providers within the locality and Service providers compliance with any requirements or guidelines they may have will ensure a smooth construction schedule without disruption to local and business community. The power demand for the construction phase will be relatively minor and the temporary connection works are entirely within the Proposed Development site, so that this would not have any potential offsite impact. The excavation of trenches within the vicinity of existing Construction electrical services will be carried out in consultation with ESB Networks to ensure there is no Power and impact on existing users. Once completed, ESB Networks will be mobilised to complete the Electricity supply commissioning in accordance with the ESB Network requirements. No remedial or mitigation measures are required in relation to power supply for the construction phase. A fibre optic cable distribution network will be installed within the site for the Proposed Construction phase Development. The connection into the wider telecommunications network will be undertaken by a statutory telecommunications operator. No remedial or mitigation measures are required **Telecommunications** in relation to telecommunications. Run-off water containing silt will be contained on site and treated to ensure adequate silt removal. The works contractor will be obliged to put best practice measures in place to ensure that there are no interruptions to service in existing surface water drainage network. There will not be any interruptions to service in existing surface water sewers. Should interruptions to surface water infrastructure be anticipated, they will be agreed in advance. Strict quality control measures as outlined under the CEMP of the contractor will be undertaken while laying pipes to minimise or eradicate infiltration (where existing water in the ground enters the surface water infrastructure) and ex-filtration (where water in the surface water infrastructure escapes into the ground). Foul drainage infrastructure A temporary connection to the foul water drainage network will be made and is required for the welfare facilities for the construction staff. The foul water drainage network has sufficient available capacity for the wastewater discharges from the welfare facilities for the short term Construction phase construction phase. Water supply, surface water and The works contractor will be obliged to put a number of measures as outlined in Chapter 2 of foul water this EIA Report and will be detailed within the CEMP in place to ensure that there is no impact infrastructure on the existing foul drainage network during the construction works. Foul drainage construction for the Proposed Development will be in accordance with the relevant standards for design and construction, including the Irish Water Code of Practice for Wastewater Infrastructure, The Building Regulations Technical Guidance Document 'Part H' & the Regional Code of Practice for Drainage Works. Strict quality control measures that will be outlined within the CEMP will be undertaken while laying pipes to minimise or eradicate infiltration and ex-filtration. Portable toilets will be provided for construction staff. The existing sewer will be extended into the site to facilitate the Proposed Development. As the construction works are entirely within the site boundary and business park, this would not have any offsite impact. The works contractor will be obliged to put a number of measures in place as outlined under the CEMP to ensure that there is no impact on the foul drainage network of the business park. Strict quality control measures as outlined under the CEMP will be undertaken while laying pipes to

minimise or eradicate infiltration and ex-filtration.

Water supply

Welfare facilities (canteens, toilets etc.) will be required for the construction staff. A temporary connection will be put in place for the construction phase. As the connection works are entirely within the Proposed Development site, and would therefore not have any potential offsite impact. The works contractor will be obliged to put best practice measures in place as outlined within the CEMP and elsewhere to ensure that there are no interruptions to service from the existing watermain. There will not be any interruptions to service from the existing water main, but should interruptions be required, they will be agreed in advance. Strict quality control measures as set out as best practice and as outlined under the CEMP will be undertaken while laying pipes to minimise or eradicate infiltration and ex-filtration.

The applicants is already in receipt of a Connection Agreement from EirGrid to connect their permitted substation (known as Kishoge) into the national grid. This offer was made by EirGrid on the 21st August 2020 in the full knowledge of the constraints within the Greater Dublin area. Given this was made following both the EirGrid 'Data Centre Connection Offer Process and Policy' ("DCCOPP") published initially in July 2019 and updated in July 2020 and the National Climate Action Plan 2019; it is only reasonable to conclude that the locational requirements and other criteria in place at the time, were considered to have been met. The nature of this offer is that it will facilitate the gas plants permitted under SDCC Planning Ref. SD21A/0042 to supply and reinforce the national grid.

The policies and long term aims of Climate Action Plan 2021 are based on continuing to facilitate data centre development, subject to certain criteria, and future reviews, up to 2030. The Plan recognises, and takes account of the changes in demand for electricity over the next 10 years; and that this will alter the profile for demand and recognises that the forecast growth in data centres will represent a challenge to Ireland's emissions targets.

Government policy set out under the Climate Action Plan 2021, states that the strategy on data centres will be reviewed (section 11.1) to ensure that growth of such users can only happen in alignment with sectoral emission ceilings and renewable energy targets. Whilst the 2021 Plan identifies the potential for further regulatory measures to manage demand from data centres, in the context of climate targets and future network needs; these do not currently exist. We respectfully submit that the adopted Plan should reflect this and should require individual data centre applications to be considered on their merits having regard to Eirgrid and CRU policy.

Operational – Power and electricity supply

The CRU published on the 23rd November 2021 the "CRU Direction to the System Operators related to Data Centre grid connection processing" (CRU/21/124). This decision allows the data centre industry to continue to connect to the electricity grid, subject to certain conditions. New data centre connections are required to have on-site generation (and/or battery storage) that is sufficient to meet their own demand and, to assist in full decarbonisation of the power system, this generation should also be capable of running on renewably sourced fuels (such as renewable gas or hydrogen) when supplies become more readily available.

The recently published 'Government Statement on the Role of Data Centres in Ireland's Enterprise Strategy' (July 2022) seeks to enable the decarbonisation and digitalisation of the Irish economy and society.

The Flexible Demand offer from Eirgrid requires an onsite energy generation solution for the site in the case where there are capacity issues on the National Grid. The permitted Power Plants, as well as providing short term permanent power will also provide mitigation back-up power supply in line with the Eirgrid offer for the site.

The *Energy Statement* that accompanies this planning application also describes how waste heat associated with the facility has the capacity to connect with a future district heating scheme developed by others.

Operational - Telecommunications

There is sufficient capacity available in the area network for the Proposed Development. Therefore, no remedial or mitigation measures are required in relation to telecommunications.

Operational - water supply, surface water and foul water infrastructure Surface water infrastructure

The surface water drainage system for the Proposed Development incorporates runoff control in the form of attenuation, which will restrict discharge from the Proposed Development to the allowable greenfield runoff rate. The attenuation storage and interceptors allows for any detritus material to be removed from the water and aids in particulate removal, increasing overall storm water quality prior to disposal.

To limit the discharges from the attenuation zones to pre-development levels flow control devices are required. It is proposed to use 'Hydrobrake' flow control systems to achieve the required discharge rates. SuDS measures will prevent an increase in the rate of surface water runoff offsite. The allowable greenfield runoff rate has been established by the project engineers, Pinnacle, Consulting Engineers, using the methodology set out in the Water Services Report. A Class 1 Bypass Oil Separator will be used to treat runoff prior to discharging from site.

Foul drainage infrastructure

Foul drainage for the Proposed Development will be in accordance with the Building Regulations Technical Guidance Document H for design and construction and Irish Waters Code of Practice for Wastewater Infrastructure. The foul drainage network will be maintained by maintenance staff to ensure system is fit for purpose and to address any operational issues should they arise over the life time of the Proposed Development.

No additional remedial or mitigation measures are required in relation to foul drainage infrastructure.

Water supply

Cold water storage tanks will be provided as part of the Proposed Development; pumps will supply water to the Proposed Development from the storage tanks. The storage tanks will act as break tanks and buffer demand on the public watermain infrastructure. Further discussions are ongoing with Irish Water. No remedial or mitigation measures are required in relation to water supply.

CHAPTER 6 - BIODIVERSITY

Appendix 6.1 Protected sites for Nature Conservation in the Vicinity of the Proposed Development European sites in the vicinity of the Proposed Development are listed below in Table 1, along with their Qualifying/Special Conservation Interests, reference to the most recent conservation objectives document, and their location relative to the Proposed Development site.

Other nationally protected sites for nature conservation in the vicinity of the Proposed Development are listed below in Table 2 along with the nature conservation interests for which they are designated, and their location relative to the Proposed Development site.

European Site Name [Code] and its Qualifying Interest(s) / Special Conservation Interest(s) (*Priority Annex I Habitats)	Location Relative to the Proposed Development Site
Special Area of Conservation (SAC)	
Rye Water Valley/Carton SAC [001398] 7220 Petrifying springs with tufa formation (Cratoneurion)* 1014 Narrow-mouthed Whorl Snail Vertigo angustior 1016 Desmoulin's Whorl Snail Vertigo moulinsiana	c. 4.1km north-west of the Proposed Development
S.I. No. 494/2018 - European Union Habitats (Rye Water Valley/Carton Special Area of Conservation 001398) Regulations 2018 NPWS (2021) Conservation Objectives: Rye Water Valley/Carton SAC 001398. Version 1. National Parks and Wildlife Service, Department of Housing, Local Government and Heritage.	
Glenasmole Valley SAC [001209] 6210 Semi-natural dry grasslands and scrubland facies on calcareous substrates (Festuco-Brometalia) (* important orchid sites) 6410 Molinia meadows on calcareous, peaty or clayey-silt-laden soils (Molinion caeruleae) 7220 Petrifying springs with tufa formation (Cratoneurion)*	c. 9.8km south-east of the Proposed Development
S.I. No. 345/22021 - European Union Habitats (Glenasmole valley special area of conservation 001209) regulations 2021 NPWS (2021) Conservation Objectives: Glenasmole Valley SAC 001209. Version 1. National Parks and Wildlife Service, Department of Housing, Local Government and Heritage.	
Wicklow Mountains SAC [002122] 3110 Oligotrophic waters containing very few minerals of sandy plains (Littorelletalia uniflorae) 3160 Natural dystrophic lakes and ponds 4010 Northern Atlantic wet heaths with Erica tetralix 4030 European dry heaths 4060 Alpine and Boreal heaths 6130 Calaminarian grasslands of the Violetalia calaminariae 6230 Species-rich Nardus grasslands, on siliceous substrates in mountain areas (and submountain areas, in Continental Europe)* 7130 Blanket bogs (* if active bog) 8110 Siliceous scree of the montane to snow levels (Androsacetalia alpinae and Galeopsietalia ladani) 8210 Calcareous rocky slopes with chasmophytic vegetation 8220 Siliceous rocky slopes with chasmophytic vegetation 91A0 Old sessile oak woods with Ilex and Blechnum in the British Isles 1355 Lutra lutra (Otter)	c. 11.4km south of the Proposed Development
NPWS (2017) Conservation Objectives: Wicklow Mountains SAC 002122. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage, Regional, Rural and Gaeltacht Affairs.	

European Site Name [Code] and its Qualifying Interest(s) / Special Conservation Interest(s) (*Priority Annex I Habitats)	Location Relative to the Proposed Development Site
Red Bog, Kildare SAC [000397] 7140 Transition mires and quaking bogs	c. 15km south of the Proposed Development
S.I. No. 76/2018 - European Union Habitats (Red Bog, Kildare Special Area of Conservation 000397) Regulations 2018 NPWS (2019) Conservation Objectives: Red Bog, Kildare SAC 000397. Version 1. National Parks and Wildlife Service, Department of Culture, Heritage and the Gaeltacht.	
South Dublin Bay SAC [000210] 1140 Mudflats and sandflats not covered by seawater at low tide 1210 Annual vegetation of drift lines 1310 Salicornia and other annuals colonising mud and sand 2110 Embryonic shifting dunes	c. 16.4km east of the Proposed Development
S.I. No. 525/2019 - European Union Habitats (South Dublin Bay Special Area of Conservation 000210) Regulations 2019 NPWS (2013) Conservation Objectives: South Dublin Bay SAC 000210. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht.	
North Dublin Bay SAC [000206] 1140 Mudflats and sandflats not covered by seawater at low tide 1210 Annual vegetation of drift lines 1310 Salicornia and other annuals colonising mud and sand 1330 Atlantic salt meadows (Glauco-Puccinellietalia maritimae) 1395 Petalwort Petalophyllum ralfsii 1410 Mediterranean salt meadows (Juncetalia maritimi) 2110 Embryonic shifting dunes 2120 Shifting dunes along the shoreline with Ammophila arenaria (white dunes) 2130 Fixed coastal dunes with herbaceous vegetation (grey dunes)* 2190 Humid dune slacks	c. 18.8km east of the Proposed Development
S.I. No. 524/2019 - European Union Habitats (North Dublin Bay Special Area of Conservation 000206) Regulations 2019 NPWS (2013) Conservation Objectives: North Dublin Bay SAC 000206. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht.	
Special Protection Area (SPA)	
North Bull Island SPA [004006] A046 Light-bellied Brent Goose Branta bernicla hrota A048 Shelduck Tadorna tadorna A052 Teal Anas crecca A054 Pintail Anas acuta A056 Shoveler Anas clypeata A130 Oystercatcher Haematopus ostralegus	c. 15.7km east of the Proposed Development
A140 Golden Plover <i>Pluvialis apricaria</i> A141 Grey Plover <i>Pluvialis squatarola</i> A143 Knot <i>Calidris canutus</i> A144 Sanderling <i>Calidris alba</i> A149 Dunlin <i>Calidris alpina</i>	
A156 Black-tailed Godwit <i>Limosa limosa</i> A157 Bar-tailed Godwit <i>Limosa lapponica</i> A160 Curlew <i>Numenius arquata</i> A162 Redshank <i>Tringa totanus</i> A169 Turnstone <i>Arenaria interpres</i> A179 Black-headed Gull <i>Chroicocephalus ridibundus</i>	95
A999 Wetlands & Waterbirds	

European Site Name [Code] and its Qualifying Interest(s) / Special Conservation Interest(s) (*Priority Annex I Habitats)	Location Relative to the Proposed Development Site
S.I. No. 211/2010 - European Communities (Conservation of Wild Birds (North Bull Island Special Protection Area 004006)) Regulations 2010. NPWS (2015) Conservation Objectives: North Bull Island SPA 004006. Version 1. National Parks and Wildlife Service, Department of Arts, Heritage and the Gaeltacht.	
Wicklow Mountains SPA [004040]	c. 12.3km south-east of the
A098 Merlin Falco columbarius	
18. REPORTED CONTRACTOR OF TRACTOR AND	Proposed Development
A103 Peregrine Falco peregrinus	
S.I. No. 586/2012 - European Communities (Conservation of Wild Birds (Wicklow Mountains Special Protection Area 004040)) Regulations 2012. NPWS (2022) Conservation objectives for Wicklow Mountains SPA [004040]. Generic Version 9.0. Department of Housing, Local Government and Heritage.	
South Dublin Bay and River Tolka Estuary SPA [004024]	c. 16.4km east of the Proposed
A046 Light-bellied Brent Goose Branta bernicla hrota	Development
A130 Oystercatcher Haematopus ostralegus	3 8 9 1
A137 Ringed Plover Charadrius hiaticula	
A141 Grey Plover Pluvialis squatarola	
A143 Knot Calidris canutus	
A144 Sanderling Calidris alba	
A149 Dunlin <i>Calidris alpina</i>	
A157 Bar-tailed Godwit Limosa Iapponica	
A162 Redshank <i>Tringa totanus</i>	
A179 Black-headed Gull Chroicocephalus ridibundus	
A192 Roseate Tern Sterna dougallii	
A193 Common Tern Sterna hirundo	
A194 Arctic Tern Sterna paradisaea	
A999 Wetland and Waterbirds	
US BETWEEN UP TO THE PROPERTY OF THE PROPERTY	
S.I. No. 212/2010 - European Communities (Conservation of Wild Birds (South Dublin Bay and River Tolka Estuary Special Protection Area 004024))	
Regulations 2010	
NPWS (2015) Conservation Objectives: South Dublin Bay and River Tolka	
Estuary SPA 004024. Version 1. National Parks and Wildlife Service,	
Department of Arts, Heritage and the Gaeltacht.	

Table 1: European sites in the vicinity of the Proposed Development.

Designated Site Name [Code] and its nature conservation features	Location Relative to the Proposed Development Site
proposed Natural Heritage Area (pNHA)	
Grand Canal pNHA [002104]	c. 46m north of the Proposed Development
Diversity of flora species the canal ecosystem supports and the presence of legally protected plant species, opposite-leaved pondweed <i>Groenlandia densa</i> .	
Liffey Valley pNHA [000128]	c. 2.8km north of the Proposed Development
The site is important for its diversity of habitats within, ranging from terrestrial	
to aquatic. A number of rare and threatened plant species, such as	
Scrophularia umbrosa, Hypericum hirsutum and Lamiastrum caleobdolon have	
been recorded from the site.	
Rye Water Valley/Carton pNHA [001398]	c. 4.2km north-west of the Proposed Development
Diversity of flora and fauna species the river ecosystem supports - see also	
Rye Water Valley/Carton SAC in Table 1 above.	
Royal Canal pNHA [002103]	c. 4.5km north of the Proposed Development

Designated Site Name [Code] and its nature conservation features	Location Relative to the Proposed Development Site
Diversity of flora species the canal ecosystem supports and the presence of legally protected plant species, opposite-leaved pondweed <i>Groenlandia densa</i> .	
Lugmore Glen pNHA [001212] The site is important as it is a fine example of wooded glen with a good representation of woodland flora. This type of habitat is scarce in Co. Dublin. The site also holds a Red Data Book species Lamiastrum galeobdolon.	c. 7km south of the Proposed Development
Dodder Valley pNHA [000991] The site represents the last remaining stretch of natural riverbank vegetation on the River Dodder in the built-up Greater Dublin Area. Includes a diversity of flora and bird species as well.	c. 8.8km south-east of the Proposed Development
Slade of Saggart and Crooksling Glen pNHA [000211] The site includes a good example of a wooded river valley and a small wetland system. The presence of a rare plant, a rare invertebrate and a variety of wildfowl species adds to the interest of the site.	c. 6.7km south of the Proposed Development
Glenasmole Valley pNHA [001209] Listed under similar conservation objectives as its SAC designation.	c. 9.5km south-east of the Proposed Development
Kilteel Wood pNHA [001394] The site is a fine example of a largely deciduous wood. Its elevated position gives it scenic value.	c. 10.8km south-west of the Proposed Development
Red Bog, Kildare pNHA [000397] Listed under similar conservation objectives as its SAC and SPA designations.	c. 15km south of the Proposed Development
South Dublin Bay pNHA [000210]	c. 16km east of the Proposed Development
Listed under similar conservation objectives as its SAC and SPA designations. North Dublin Bay pNHA [000210] Listed under similar conservation objectives as its SAC and SPA designations.	c. 15km east of the Proposed Development
Booterstown Marsh pNHA [001205] The site is designated for its tidal habitats, rare flora and wintering bird copulations.	c. 17.1km east of the Proposed Development
Dolphins, Dublin Docks pNHA [000201]	c. 17.2km east of the Proposed Development
Listed for breeding tern colonies.	

 Table 2: Nationally protected sites in the vicinity of the Proposed Development.

Desk study Flora and Fauna records Appendix 6.2

Desktop records of protected, rare, or other notable plant species, from the NPWS within the same 10km grid square, O03, in which the Proposed Development is located in, are listed below in Table 1. These are plant species which are legally protected under the Flora (Protection) Order, 2022and/or are listed as Critically Endangered, Endangered or Vulnerable on the relevant national Red Data list for Ireland¹. The NBDC database search did not return any rare and/or protected flora for within c. 2km of the Proposed Development.

Common Name/ Scientific name	Legal Status ²	Red List Status	Source
Betony Betonica officinalis	FPO, 2022	None	NPWS database record
Hairy St John's-wort Hypericum hirsutum	FPO, 2022	None	NPWS database record
Hairy Violet Viola hirta	FPO, 2022	Vulnerable	NPWS database record
Meadow barley Hordeum secalinum	FPO, 2022	Vulnerable	NPWS database record
Opposite-leaved Pondweed Groenlandia densa	FPO, 2022	None	NPWS database record
Red Hemp-nettle Galeopsis angustifolia	FPO, 2022	Vulnerable	NPWS database record

Table 1: Records of protected, red-listed or notable flora recorded from the desk study in the vicinity of the study area.

Desktop records of protected, rare, or other notable fauna species are listed below in Table 2. In relation to amphibian, reptile and mammal species those which are protected under the Wildlife Acts, the Habitats Directive and/or are listed as threatened (Vulnerable to Critically Endangered) on the relevant national Red Lists are included. In the case of bird species, only those species listed in Annex I of the Birds Directive or on the Birds of Conservation Concern in Ireland (BoCCI) Red List are included in the table below. For invertebrate species, those which are listed as threatened (Vulnerable to Critically Endangered) on the relevant national Red List are included.

¹ Vascular flora from Wyse Jackson, M., FitzPatrick, Ú., Cole, E., Jebb, M., McFerran, D., Sheehy Skeffington, M. & Wright, M. (2016) Ireland Red List No. 10: Vascular Plants. National Parks and Wildlife Service, Department of Arts, Heritage, Regional, Rural and Gaeltacht Affairs, Dublin, Ireland.

² HDII/IV/V = Habitats Directive Annexes II/IV/V; FPO = Flora (Protection) Order, 2015; WA = Wildlife Acts

Common Name/ Scientific Name	Legal Status ³	Red List Status ⁴	Source
Amphibians and Reptiles			
Common frog	HD_V, WA	Least	NPWS database record
Rana temporaria		concern	
Common lizard	WA	Least	NPWS database record
Zootoca vivipara		concern	711 770 Galabass 755574
Smooth newt	WA	Least	NBDC online database record
Lissotriton vulgaris		concern	NPWS database record
Mammals (Terrestrial)		CONCONT	THE TO GALADAGO FOCOTO
Brown Long-eared Bat	HD IV, WA	Least	NBDC online database record
Plecotus auritus	110_17, 77	concern	TABBO Offinite database record
Common pipistrelle	HD_IV, WA	Least	NBDC online database record
Pipistrellus pipistrellus	TID_IV, WA	concern	NDDC offilite database record
Daubenton's Bat	WA	Least	NBDC online database record
Myotis daubentonii	VVA	SERVINE	NBBC offilite database record
Leisler's bat	HD_IV, WA	Least	NBDC online database record
Nyctalus leisleri	HD_IV, WA		NBDC online database record
Otter	HD II & IV, WA	concern	NBDC online database record
Lutra lutra	HD_II & IV, WA	Least	NPWS database record
	LID MANA	concern	
Pine Marten	HD_V, WA	Least	NBDC online database record
Martes martes	14/4	concern	NDDO P. L. L.
Pygmy shrew	WA	Least	NBDC online database record
Sorex minutus		concern	
Birds	1444		NRRC III LALL
Barn swallow Hirundo rustica	WA	Amber	NBDC online database record
Black-headed gull Chroicocephalus ridibundus	WA	Amber	Scott Cawley Ltd. (2021) record ⁵
Common coot	WA	Amber	NBDC online database record
Fulica atra	VVA	Allibei	NBDC offilite database record
Common gull	10/0	Amber	Spott Cowley Ltd. (2021) record
Larus canus	WA	Amber	Scott Cawley Ltd. (2021) record
Cormorant	10/0	Amber	Coatt Courley Ltd (2001) record
Phalacrocorax carbo	WA	Amber	Scott Cawley Ltd. (2021) record
	10/0	Auchau	NDDC online database record
Common starling Sturnus vulgaris	WA	Amber	NBDC online database record
Common woodpigeon	WA, BD_II (I), III	Green	NBDC online database record
Columba palumbus	(1)	- Street Controller	New American Control of the Control
Herring gull	WA	Amber	Scott Cawley Ltd. (2021) record
Larus argentatus	MEDIC ACTIONS IN		, , , , , , , , , , , , , , , , , , ,
House martin	WA	Amber	NBDC online database record
Delichon urbicum	10.5 (20.00)	2000 MB/T 8	
Grey heron	WA	Green	Scott Cawley Ltd. (2021) record
Ardea cinerea	CONT. OF CONT.	21.0011	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Northern Lapwing	WA, BD Annex	Red	Scott Cawley Ltd. (2021) record
Vanellus vanellus	II (II)		255 5411107 2.13. (252.1) 100014
Lesser black-backed gull	WA	Amber	Scott Cawley Ltd. (2021) record
Larus fuscus			~ 5 A

³ HD_II/IV/V = Habitats Directive Annexes II/IV/V; WA = Wildlife Acts; BD_I/II/III = Birds Directive Annex I/II/III; OSPAR = Convention for the protection of the marine environment of the North-east Atlantic 1992

⁴ Mammals from Marnell, F., Looney, D. & Lawton, C. (2019) Ireland Red List No. 12: Terrestrial Mammals. National Parks and Wildlife Service, Department of the Culture, Heritage and the Gaeltacht, Dublin, Ireland.

Birds from Gilbert, G., Stanbury, A. & Lewis, L. (2021) *Birds of Conservation Concern in Ireland 4: 2020-2026*. Irish Birds 43: 1-22

Amphibians, reptiles and fish from King, J.L., Marnell, F., Kingston, N., Rosell, R., Boylan, P., Caffrey, J.M., Fitzpatrick, Ú., Gargan, P.G., Kelly, F.L., O'Grady, M.F., Poole, R., Roche, W.K. & Cassidy, D. (2011) *Ireland Red List No. 5: Amphibians, Reptiles &* Freshwater Fish.

Non-Marine Molluscs from Byrne, A., Moorkens, E.A., Anderson, R., Killeen, I.J. & Regan, E.C. (2009) Ireland Red List No. 2: Non-Marine Molluscs.

⁵ Scott Cawley Ltd. (2021) Wintering Bird Survey Report for Clonburris Strategic Development Zone at Clonburris, Co. Dublin.

Common Name/ Scientific Name	Legal Status ³	Red List Status ⁴	Source
Little grebe Tachybaptus ruficollis	WA	Green	Scott Cawley Ltd. (2021) record
Mallard Anas platyrhynchos	WA, BD Annex II (I), III (I)	Amber	Scott Cawley Ltd. (2021) record
Tufted duck Aythya fuligula	WA, BD Annex II (II)	Amber	Scott Cawley Ltd. (2021) record
Invertebrates			
Globular Pea Mussel Pisidium hibernicum	none	Near threatened	NBDC online database record
Iridescent pea mussel Pisidium pulchellum	none	Endangered	NBDC online database record

Appendix 6.3 Examples of valuing important ecological features

International Importance:

'European Site' including Special Area of Conservation (SAC), Site of Community Importance (SCI), Special Protection Area (SPA) or proposed Special Area of Conservation.

Proposed Special Protection Area (pSPA).

Site that fulfils the criteria for designation as a 'European Site' (see Annex III of the Habitats Directive, as amended).

Features essential to maintaining the coherence of the Natura 2000 Network.6

Site containing 'best examples' of the habitat types listed in Annex I of the Habitats Directive.

Resident or regularly occurring populations (assessed to be important at the national level)⁷ of the following:

Species of bird, listed in Annex I and/or referred to in Article 4(2) of the Birds Directive; and/or

Species of animal and plants listed in Annex II and/or IV of the Habitats Directive.

Ramsar Site (Convention on Wetlands of International Importance Especially Waterfowl Habitat 1971).

World Heritage Site (Convention for the Protection of World Cultural & Natural Heritage, 1972).

Biosphere Reserve (UNESCO Man & The Biosphere Programme).

Site hosting significant species populations under the Bonn Convention (Convention on the Conservation of Migratory Species of Wild Animals, 1979).

Site hosting significant populations under the Berne Convention (Convention on the Conservation of European Wildlife and Natural Habitats, 1979).

Biogenetic Reserve under the Council of Europe.

European Diploma Site under the Council of Europe.

Salmonid water designated pursuant to the European Communities (Quality of Salmonid Waters) Regulations, 1988, (S.I. No. 1988).8

National Importance:

Site designated or proposed as a Natural Heritage Area (NHA).

Statutory Nature Reserve.

Refuge for Fauna and Flora protected under the Wildlife Acts.

National Park.

Undesignated site fulfilling the criteria for designation as a Natural Heritage Area (NHA); Statutory Nature Reserve; Refuge for Fauna and Flora protected under the Wildlife Act; and/or a National Park.

Resident or regularly occurring populations (assessed to be important at the national level)⁹ of the following:

Species protected under the Wildlife Acts; and/or

Species listed on the relevant Red Data list.

Site containing 'viable areas'10 of the habitat types listed in Annex I of the Habitats Directive

County Importance:

Area of Special Amenity.11

Area subject to a Tree Preservation Order.

Area of High Amenity, or equivalent, designated under the County Development Plan.

Resident or regularly occurring populations (assessed to be important at the County level)12 of

the following:

Species of bird, listed in Annex I and/or referred to in Article 4(2) of the Birds Directive;

Species of animal and plants listed in Annex II and/or IV of the Habitats Directive;

Species protected under the Wildlife Acts; and/or

⁶ See Articles 3 and 10 of the Habitats Directive

⁷ It is suggested that, in general, 1% of the national population of such species qualifies as an internationally important population. However, a smaller population may qualify as internationally important where the population forms a critical part of a wider population or the species is at a critical phase of its life cycle.

⁸ Note that such waters are designated based on these waters' capabilities of supporting salmon (*Salmo salar*), trout (*Salmo trutta*), char (*Salvelinus*) and whitefish (*Coregonus*)

⁶ It is suggested that, in general, 1% of the national population of such species qualifies as a nationally important population. However, a smaller population may qualify as nationally important where the population forms a critical part of a wider population or the species is at a critical phase of its life cycle.

10 A 'viable area' is defined as an area of a habitat that, given the particular characteristics of that habitat, was of a sufficient size and

¹⁰ A 'viable area' is defined as an area of a habitat that, given the particular characteristics of that habitat, was of a sufficient size and shape, such that its integrity (in terms of species composition, and ecological processes and function) would be maintained in the face of stochastic change (for example, as a result of climatic variation).

¹¹ It should be noted that whilst areas such as Areas of Special Amenity, areas subject to a Tree Preservation Order and Areas of High Amenity are often designated on the basis of their ecological value, they may also be designated for other reasons, such as their amenity or recreational value. Therefore, it should not be automatically assumed that such sites are of County importance from an ecological perspective.

¹² It is suggested that, in general, 1% of the County population of such species qualifies as a County important population. However, a smaller population may qualify as County important where the population forms a critical part of a wider population or the species is at a critical phase of its life cycle.

Species listed on the relevant Red Data list.

Site containing area or areas of the habitat types listed in Annex I of the Habitats Directive that do not fulfil the criteria for valuation as of International or National importance.

County important populations of species, or viable areas of semi-natural habitats or natural heritage features identified in the National or Local Biodiversity Action Plan, if this has been prepared.

Sites containing semi-natural habitat types with high biodiversity in a county context and a high degree of naturalness, or populations of species that are uncommon within the county.

Sites containing habitats and species that are rare or are undergoing a decline in quality or extent at a national level.

Local Importance (higher value):

Locally important populations of priority species or habitats or natural heritage features identified in the Local BAP, if this has been prepared;

Resident or regularly occurring populations (assessed to be important at the Local level)¹³ of the following:

Species of bird, listed in Annex I and/or referred to in Article 4(2) of the Birds Directive;

Species of animal and plants listed in Annex II and/or IV of the Habitats Directive;

Species protected under the Wildlife Acts; and/or

Species listed on the relevant Red Data list.

Sites containing semi-natural habitat types with high biodiversity in a local context and a high degree of naturalness, or populations of species that are uncommon in the locality:

Sites or features containing common or lower value habitats, including naturalised species that are nevertheless essential in maintaining links and ecological corridors between features of higher ecological value.

Local Importance (lower value):

Sites containing small areas of semi-natural habitat that are of some local importance for wildlife;

Sites or features containing non-native species that are of some importance in maintaining habitat links.

Edgeconnex (DUB06), EIA Report - Appendix

¹³ It is suggested that, in general, 1% of the local population of such species qualifies as a locally important population. However, a smaller population may qualify as locally important where the population forms a critical part of a wider population or the species is at a critical phase of its life cycle.

Appendix 6.4 Flora Species List by Habitat

Dry meadows and grassy verges (GS2)	Hedgerows (WL1)	Recolonising bare ground (ED3)
Barren Brome	Ash	Barren Brome
Anisantha sterilis	Fraxinus excelsior	Anisantha sterilis
Broad-leaved Dock	Barren Brome	Cut-leaved Crane's-bill
Rumex obtusifolius	Anisantha sterilis	Geranium dissectum
Bush Vetch	Bittersweet	Fleabane species
Vicia sepium	Solanum dulcamara	Erigeron sp
Cock's-foot	Blackthorn	Hedge Mustard
Dactylis glomerata	Prunus spinosa	Sisymbrium officinale
Common Nettle	Bramble	Lesser Trefoil
Urtica dioica	Rubus fruticosus agg.	Trifolium dubium
Cowslip	Bush vetch	Perennial Sow-thistle
Primula veris	Vicia sativa	Sonchus arvensis
Creeping Bent	Cleavers	Procumbent Pearlwort
Agrostis stolonifera	Galium aparine	Sagina procumbens
Creeping Buttercup	Common Field-speedwell	Red Clover
Ranunculus repens	Veronica persica	Trifolium pratense
Creeping Thistle	Common Ivy	White Clover
Cirsium arvense	Hedera helix	Trifolium repens
Curled Dock	Common Nettle	Yorkshire-fog
Rumex crispus	Urtica dioica	Holcus lanatus
Cut-leaved Crane's-bill	Cowslip	
Geranium dissectum	Primula veris	
Elder	Cut-leaved Crane's-bill	
Sambucus nigra	Geranium dissectum	
False Oat-Grass	Dog-rose	
Arrhenatherum elatius	Rosa canina agg.	*
False-brome	Elder	
Brachypodium sylvaticum	Sambucus nigra	
Hoary Willowherb	False-brome	
Epilobium parviflorum	Brachypodium sylvaticum	
Hogweed	Ground-ivy	
Heracleum sphondylium	Glechoma hederacea	
Perennial Rye-grass	Hawthorn	
Lolium perenne	Crataegus monogyna	
Perennial Sow-thistle	Hedge Bindweed	
Sonchus arvensis	Calystegia sepium	
Prickly Sow-thistle	Hogweed	
Sonchus asper	Heracleum sphondylium	
Red Fescue	Lesser Burdock	
Festuca rubra agg.	Arctium minus	
Ribwort Plantain	Oak species	
Plantago lanceolata	Quercus sp	
Rosebay Willowherb	Wood Avens	
Chamaenerion angustifolium	Geum urbanum	
Silverweed		
Argentina anserina		
Soft-brome		
Bromus hordeaceus	_	
Spear Thistle		
Cirsium vulgare	_	
White Clover		
Trifolium repens	-	
Yorkshire-fog		
Holcus lanatus		

Appendix 6.5 Relevant Policies and objectives

Policies and objectives relevant to the Proposed Development and referenced in the chapter are presented in the following tables. Table 1 covers relevant policies and objectives found in the South Dublin County Development Plan 2022-2028, and includes those covering designated sites, water quality and biodiversity. Table 2 covers additional land use plan policies and objectives that are relevant in the wider area, together with the Development Plan, on European sites and water quality within Dublin Bay.

South Dublin County Development Plan 2022-2028

Policy NCBH3 Natura 2000 Sites

Conserve and protect Natura 2000 sites and achieve and maintain favourable conservation status for habitats and species that are considered to be at risk through the protection of the Natura 2000 network from any plans or projects that are likely to have a significant effect on their coherence or integrity

NCBH3 Objective 1

To prevent development and activities that would adversely affect the integrity of any Natura 2000 site located within or adjacent to the County and promote the favourable conservation status of the habitats and species integral to these sites.

NCBH3 Objective 2

To ensure that plans, including land use plans, will only be adopted, if they either individually or in combination with existing and / or proposed plans or projects, will not have a significant adverse effect on a European Site, or where such a plan is likely or might have such a significant adverse effect (either alone or in combination), South Dublin County Council will, as required by law, carry out an appropriate assessment as per requirements of Article 6(3) of the Habitats Directive 92 / 43 / EEC of the 21 May 1992 on the conservation of natural habitats and of wild fauna and flora, as transposed into Irish legislation. Only after having ascertained that the plan will not adversely affect the integrity of any European site, will South Dublin County Council adopt the plan, incorporating any necessary mitigation measures. A plan which could adversely affect the integrity of a European site may only be adopted in exceptional circumstances, as provided for in Article 6(4) of the Habitats Directive as transposed into Irish legislation.

NCBH3 Objective 3

To ensure that planning permission will only be granted for a development proposal that, either individually or in combination with existing and / or proposed plans or projects, will not have a significant adverse effect on a European Site, or where such a development proposal is likely or might have such a significant adverse effect (either alone or in combination), the planning authority will, as required by law, carry out an appropriate assessment as per requirements of Article 6(3) of the Habitats Directive 92 / 43 / EEC of the 21 May 1992 on the conservation of natural habitats and of wild fauna and flora, as transposed into Irish legislation. Only after having ascertained that the development proposal will not adversely affect the integrity of any European site, will the planning authority agree to the development and impose appropriate mitigation measures in the form of planning conditions. A development proposal which could adversely affect the integrity of a European site may only be permitted in exceptional circumstances, as provided for in Article 6(4) of the Habitats Directive as transposed into Irish legislation.

GI1 Objective 3

To facilitate the development and enhancement of sensitive access to and connectivity between areas of interest for residents, wildlife and biodiversity, and other distinctive landscapes as focal features for linkages between natural, semi natural and formalised green spaces where feasible and ensuring that there is no adverse impact (directly, indirectly or cumulatively) on the conservation objectives of Natura 2000 sites and protected habitats outside of Natura 2000 sites

IE2 Objective 1

To work in conjunction with Irish Water to protect existing water and drainage infrastructure and to promote the ongoing upgrade and expansion of water supply and wastewater services to meet the future needs of the County and the Region.

Policy IE3 Surface Water and Groundwater

Manage surface water and protect and enhance ground and surface water quality to meet the requirements of the EU Water Framework Directive.

IE3 Objective 1

To maintain, improve and enhance the environmental and ecological quality of our surface waters and groundwater by implementing the relevant programme of measures set out in the River Basin Management Plans.

IE3 Objective 2

To maintain and enhance existing surface water drainage systems in the County and to require Sustainable Drainage Systems (SuDS) in new development in accordance with objectives set out in section 4.2.2 of this Plan including, where feasible, integrated constructed wetlands, at a local, district and County level, to control surface water outfall and protect water quality.

Table 1: Relevant land use plan policies/objectives within South Dublin County Development Plan 2022-2028 relating to the protection of designated sites, water quality and biodiversity.

Dún Laoghaire-Rathdown County Development Plan 2022-2028

Policy Objective GIB18: Protection of Natural Heritage and the Environment

It is a Policy Objective to protect and conserve the environment including, in particular, the natural heritage of the County and to conserve and manage Nationally and Internationally important and EU designated sites - such as Special Protection Areas (SPAs), Special Areas of Conservations (SACs), proposed Natural Heritage Areas (pNHAs) and Ramsar sites (wetlands) - as well as non-designated areas of high nature conservation value known as locally important areas which also serve as 'Stepping Stones' for the purposes of Article 10 of the Habitats Directive

Policy Objective GIB19: Habitats Directive

It is a Policy Objective to ensure the protection of natural heritage and biodiversity, including European Sites that form part of the Natura 2000 network, in accordance with relevant EU Environmental Directives and applicable National Legislation, Policies, Plans and Guidelines.

Policy Objective GIB21: Designated Sites

It is a Policy Objective to protect and preserve areas designated as proposed Natural Heritage Areas, Special Areas of Conservation, and Special Protection Areas. It is Council policy to promote the maintenance and as appropriate, delivery of 'favourable' conservation status of habitats and species within these areas.

Policy Objective GIB22: Non-Designated Areas of Biodiversity Importance

It is a Policy Objective to protect and promote the conservation of biodiversity in areas of natural heritage importance outside Designated Areas and to ensure that notable sites, habitats and features of biodiversity importance - including species protected under the Wildlife Acts 1976 and 2000, the Birds Directive 1979, the Habitats Directive 1992, Flora (Protection) Order, 2015, Annex I habitats, local important areas, wildlife corridors and rare species - are adequately protected. Ecological assessments will be carried out for all developments in areas that support, or have potential to support, features of biodiversity importance or rare and protected species and appropriate mitigation/ avoidance measures will be implemented. In implementing this policy, regard shall be had to the Ecological Network, including the forthcoming DLR Wildlife Corridor Plan, and the recommendations and objectives of the Green City Guidelines (2008) and 'Ecological Guidance Notes for Local Authorities and Developers' (Dún Laoghaire-Rathdown Version 2014)

Policy Objective GIB23: County-Wide Ecological Network

It is a Policy Objective to protect the Ecological Network which will be integrated into the updated Green Infrastructure Strategy and will align with the DLR County Biodiversity Action Plan. Creating this network throughout the County will also improve the ecological coherence of the Natura 2000 network in accordance with Article 10 of the Habitats Directive. The network will also include non-designated sites.

Policy Objective EI7: Water Supply and Wastewater treatment and Appropriate Assessment

It is a Policy Objective to require that all developments relating to water supply and wastewater treatment are subject to screening for Appropriate Assessment to ensure there are no likely significant effects on the integrity, defined by the structure and function, of any European sites and that the requirements of Article 6 of the EU Habitats Directive are met. (Consistent with RPO 10.7 of the RSES).

Policy Objective El8: Groundwater Protection and Appropriate Assessment

It is a Policy Objective to ensure the protection of the groundwater resources in and around the County and associated habitats and species in accordance with the Groundwater Directive 2006/118/EC and the European Communities Environmental Objectives (Groundwater) Regulations, 2010. In this regard, the Council will support the implementation of Irish Water's Water Safety Plans to protect sources of public water supply and their contributing catchment.

Policy Objective EI2: Irish Water Enabling Policies Irish Water's Plans and Programmes

It is a Policy Objective - in conjunction with the Eastern and Midland Regional Authority, where appropriate - to work with and support Irish Water in the delivery of the strategic objectives and strategic water and wastewater projects and infrastructure as set out in the 'Water Services Strategic Plan' (2015), any subsequent plan, Irish Water's Capital Investment Plan 2020 – 2024, any subsequent Capital Investment Plans and the forthcoming National Water Resources Plan, so as to ensure provision of infrastructure to service settlements in accordance with the Core Strategy of this Plan, and the settlement strategy of the RSES. (Consistent with RPO 10.2, 10.3, 10.11, 10.16 of the RSES).

Policy Objective EI5: River Basin Management Plans (RMBPs)

It is a Policy Objective: To ensure the delivery of the relevant policies and objectives of the River Basin Management Plan for Ireland 2018 – 2021 and any subsequent plan, including those relating to protection of water status, improvement of water status, prevention of deterioration and meeting objectives for designated protected sites. To support Irish Water in its implementation of Water Quality Management Plans for ground, surface, coastal and estuarine waters as part of the implementation of the EU Water Framework Directive. To support Irish Water in the development of Drinking Water Protection Plans.

Policy Objective El6: Sustainable Drainage Systems

It is a Policy Objective to ensure that all development proposals incorporate Sustainable Drainage Systems (SuDS).

Policy Objective El17: Water Pollution

It is a Policy Objective to implement the provisions of water pollution abatement measures in accordance with national and EU Directives and other legislative requirements in conjunction with other agencies as appropriate.

Fingal Development Plan 2017-2023

Objective NH10

Ensure that the Council takes full account of the requirements of the Habitats and Birds Directives, as they apply both within and without European Sites in the performance of its functions.

Objective NH11

Ensure that the Council, in the performance of its functions, takes full account of the objectives and management practices proposed in any management or related plans for European Sites in and adjacent to Fingal published by the Department of Arts, Heritage, Regional, Rural and Gaeltacht Affairs.

Objective NH15

Strictly protect areas designated or proposed to be designated as Natura 2000 sites (i.e. Special Areas of Conservation (SACs) and Special Protection Areas (SPAs); also known as European sites) including any areas that may be proposed for designation or designated during the period of this Plan.

Objective SW04

Require the use of sustainable drainage systems (SuDS) to minimise and limit the extent of hard surfacing and paving and require the use of sustainable drainage techniques where appropriate, for new development or for extensions to existing developments, in order to reduce the potential impact of existing and predicted flooding risks.

Objective WQ01

Strive to achieve 'good status' in all waterbodies in compliance with the Water Framework Directive, the Eastern River Basin District Management Plan 2009-2015 and the associated Programme of Measures (first cycle) and to cooperate with the development and implementation of the second cycle national River Basin Management Plan 2017-2021.

Objective WQ04

Protect existing riverine wetland and coastal habitats and where possible create new habitats to maintain naturally functioning ecosystems whilst ensuring they do not impact negatively on the conservation objectives of any European Sites.

Objective WT01

Liaise with and work in conjunction with Irish Water during the lifetime of the plan for the provision, extension and upgrading of waste water collection and treatment systems in all towns and villages of the County to serve existing populations and facilitate sustainable development of the County, in accordance with the requirements of the Settlement Strategy and associated Core Strategy.

Objective WT02

Liaise with Irish Water to ensure the provision of wastewater treatment systems in order to ensure compliance with existing licences, EU Water Framework Directive, River Basin Management Plans, the Urban Wastewater Directive and the EU Habitats Directive.

Wicklow County Development Plan 2016-2022

NH₂

No projects giving rise to significant cumulative, direct, indirect or secondary impacts on Natura 2000 sites arising from their size or scale, land take, proximity, resource requirements, emissions (disposal to land, water or air), transportation requirements, duration of construction, operation, decommissioning or from any other effects shall be permitted on the basis of this plan (either individually or in combination with other plans or projects). Except as provided for in Section 6(4) of the Habitats Directive, viz. There must be a) no alternative solution available, b) imperative reasons of overriding public interest for the project to proceed; and c) Adequate compensatory measures in place.

NH3

To contribute, as appropriate, towards the protection of designated ecological sites including candidate Special Areas of Conservation (cSACs) and Special Protection Areas (SPAs); Wildlife Sites (including proposed Natural Heritage Areas); Salmonid Waters; Flora Protection Order sites; Wildfowl Sanctuaries (see S.I. 192 of 1979); Freshwater Pearl Mussel catchments; and Tree Preservation Orders (TPOs). To contribute towards compliance with relevant EU Environmental Directives and applicable National Legislation, Policies, Plans and Guidelines, including the following and any updated/superseding documents:

- EU Directives, including the Habitats Directive (92/43/EEC, as amended)7, the Birds Directive (2009/147/EC)8, the Environmental Liability Directive (2004/35/EC)9, the Environmental Impact Assessment Directive (85/337/EEC, as amended), the Water Framework Directive (2000/60/EC) and the Strategic Environmental Assessment Directive (2001/42/EC).
- National legislation, including the Wildlife Act 197610, the European Communities (Environmental Impact Assessment) Regulations 1989 (SI No. 349 of 1989) (as amended), the Wildlife (Amendment) Act 2000, the European Union (Water Policy) Regulations 2003 (as amended), the Planning and Development Act 2000 (as amended), the European Communities (Birds and Natural Habitats) Regulations 2011 (SI No. 477 of 2011) and

the European Communities (Environmental Liability) Regulations 200811.

- National policy guidelines (including any clarifying Circulars or superseding versions of same), including the Landscape and Landscape Assessment Draft Guidelines 2000, the Environmental Impact Assessment Sub-Threshold Development Guidelines 2003, Strategic Environmental Assessment Guidelines 2004 and the Appropriate Assessment Guidance 2010.
- Catchment and water resource management Plans, including Eastern and South Eastern River Basin Management Plan 2009-2015 (including any superseding versions of same).
- Biodiversity Plans and guidelines, including Actions for Biodiversity 2011-2016: Ireland's 2nd National Biodiversity Plan (including any superseding version of same).
- Ireland's Environment 2014 (EPA, 2014, including any superseding versions of same), and to make provision where appropriate to address the report's goals and challenges.

NH4

All projects and plans arising from this plan12 (including any associated improvement works or associated infrastructure) will be screened for the need to undertake Appropriate Assessment under Article 6 of the Habitats Directive. A plan or project will only be authorised after the competent authority has ascertained, based on scientific evidence, Screening for Appropriate Assessment, and a Stage 2 Appropriate Assessment where necessary, that:

- 1) The Plan or project will not give rise to significant adverse direct, indirect or secondary effects on the integrity of any European site (either individually or in combination with other plans or projects); or
- 2) The Plan or project will have significant adverse effects on the integrity of any European site (that does not host a priority natural habitat type and / or a priority species) but there are no alternative solutions and the plan or project must nevertheless be carried out for imperative reasons of overriding public interest, including those of a social or economic nature. In this case, it will be a requirement to follow procedures set out in legislation and agree and undertake all compensatory measures necessary to ensure the protection of the overall coherence of Natura 2000; or 3) The Plan or project will have a significant adverse effect on the integrity of any European site (that hosts a natural habitat type and/or a priority species) but there are no alternative solutions and the plan or project must nevertheless be carried out for imperative reasons for overriding public interest, restricted to reasons of human health or public safety, to beneficial consequences of primary importance for the environment or, further to an opinion from the Commission, to other imperative reasons of overriding public interest. In this case, it will be a requirement to follow procedures set out in legislation and agree and undertake all compensatory measures necessary to ensure the protection of the overall coherence of Natura 2000.

NH₅

To maintain the conservation value of all proposed and future Natural Heritage Areas (NHAs) and to protect other designated ecological sites in Wicklow.

Along with cSACs, SPAs and pNHA these include Salmonid Waters; Flora Protection Order sites; Wildfowl Sanctuaries (see S.I. 192 of 1979); Freshwater Pearl Mussel catchments; and Tree Preservation Orders (TPOs).

WI2

To protect existing and potential water resources of the County, in accordance with the EU Water Framework Directive, the River Basin Management Plans, the Groundwater Protection Scheme and source protection plans for public water supplies.

WI12

Ensure the implementation of Sustainable Urban Drainage Systems (SUDS) and in particular, to ensure that all surface water generated in a new development is disposed of on-site or is attenuated and treated prior to discharge to an approved surface water system.

WI6

In order to fulfil the objectives of the Core Strategy, Wicklow County Council will work alongside and facilitate the delivery of Irish Water's Water Services Investment Programme, to ensure that all lands zoned for development are serviced by an adequate wastewater collection and treatment system and in particular, to endeavour to secure the delivery of regional and strategic wastewater schemes. In particular, to support and facilitate the development of a WWTP in Arklow, at an optimal location following detailed technical and environmental assessment and public consultation.

WI7

Permission will be considered for private wastewater treatment plants for single rural houses where: \cdot the specific ground conditions have been shown to be suitable for the construction of a treatment plant and any associated percolation area;

- the system will not give rise to unacceptable adverse impacts on ground waters / aquifers and the type of treatment proposed has been drawn up in accordance with the appropriate groundwater protection response set out in the Wicklow Groundwater Protection Scheme (2003);
- the proposed method of treatment and disposal complies with Wicklow County Council's Policy for Wastewater Treatment & Disposal Systems for Single Houses (PE ≤ 10) and the Environmental Protection Agency "Wastewater Treatment Manuals"; and
- in all cases the protection of ground and surface water quality shall remain the overriding priority and proposals must definitively demonstrate that the Proposed Development will not have an adverse impact on water quality

standards and requirements set out in EU and national legislation and guidance documents.

WI9

Private wastewater treatment plants for commercial / employment generating development will only be considered where:

- Irish Water has confirmed the site is due to be connected to a future public system in the area6 or Irish Water have confirmed there are no plans for a public system in the area;
- it can clearly demonstrated that the proposed system can meet all EPA / Local Authority environmental criteria;
 and
- an annually renewed contract for the management and maintenance of the system is contracted with a reputable company / person, details of which shall be provided to the Local Authority.

Kildare County Development Plan 2017-2023

NH 4

Support the conservation and enhancement of Natura 2000 Sites including any additional sites that may be proposed for designation during the period of this Plan and to protect the Natura 2000 network from any plans and projects that are likely to have a significant effect on the coherence or integrity of a Natura 2000 Site.

NH 5

Prevent development that would adversely affect the integrity of any Natura 2000 site located within and immediately adjacent to the county and promote favourable conservation status of habitats and protected species including those listed under the Birds Directive, the Wildlife Acts and the Habitats Directive.

NH₆

Ensure an Appropriate Assessment, in accordance with Article 6(3) and Article 6(4) of the Habitats Directive and with DEHLG guidance (2009), is carried out in respect of any plan or project not directly connected with or necessary to the management of a Natura 2000 site to determine the likelihood of the plan or project having a significant effect on a Natura 2000 site, either individually or in combination with other plans or projects and to ensure that projects which may give rise to significant cumulative, direct, indirect or secondary impacts on Natura 2000 sites will not be permitted (either individually or in combination with other plans or projects) unless for reasons of overriding public interest.

WQ 1

Co-operate with the EPA and other authorities in the continued implementation of the EU Water Framework Directive and assist and co-operate with the lead authority for the River Basin Management Plan(s).

WQ 2

Ensure, through the implementation of the River Basin Management Plan(s) and the associated Programmes of Measures and any other associated legislation, the protection and improvement of all drinking water, surface water and ground waters throughout the county.

WQ 6

Protect recognised salmonid water courses in conjunction with Inland Fisheries Ireland such as the Liffey catchment, which are recognised to be exceptional in supporting salmonid fish species.

WW 4

Ensure that adequate wastewater services will be available to service development prior to the granting of planning permission. Applicants who are proposing to connect to the public wastewater network should consult with Irish Water regarding available capacity prior to applying for planning permission.

WW 12

Ensure that existing and permitted private wastewater treatment plants are operated in compliance with their wastewater discharge license, in order to protect water quality.

Meath County Development Plan 2021-2027

HER POL 28

To integrate in the development management process the protection and enhancement of biodiversity and landscape features wherever possible, by minimising adverse impacts on existing habitats (whether designated or not) and by including mitigation and/or compensation measures, as appropriate.

HER POL 31

To ensure that the ecological impact of all development proposals on habitats and species are appropriately assessed by suitably qualified professional(s) in accordance with best practice guidelines – e.g. the preparation of an Ecological Impact Assessment (EcIA), Screening Statement for Appropriate Assessment, Environmental Impact Assessment, Natura Impact Statement (NIS), species surveys etc. (as appropriate).

HER POL 32

To permit development on or adjacent to designated Special Areas of Conservation, Special Protection Areas, Natural Heritage Areas, Statutory Nature Reserves or those proposed to be designated over the period of the Plan, only where the development has been subject to the outcome of the Appropriate Assessment process and has been carried out to the satisfaction of the Planning Authority, in consultation with National Parks and Wildlife.

HER POL 33

To have regard to the views and guidance of the National Parks and Wildlife Service in respect of Proposed Development where there is a possibility that such development may have an impact on a designated European or National site or a site proposed for such designation.

HER POL 34

To undertake appropriate surveys and collect data to provide an evidence-base to assist the Council in meeting its obligations under Article 6 of the Habitats Directives (92/43/EEC) as transposed into Irish Law, subject to available resources.

HER OBL 33

To ensure an Appropriate Assessment in accordance with Article 6(3) and Article 6(4) of the Habitats Directives (92/43/EEC) and in accordance with the Department of Environment, Heritage and Local Government Appropriate Assessment of Plans and Projects in Ireland – Guidance for Planning Authorities, 2009 and relevant EPA and European Commission guidance documents, is carried out in respect of any plan or project not directly connected with or necessary for the management of the site but likely to have a significant effect on a Natura 2000 site(s), either individually or in-combination with other plans or projects, in view of the site's conservation objectives.

HER OBL 34

To protect and conserve the conservation value of candidate Special Areas of Conservation, Special Protection Areas, Natural Heritage Areas and proposed Natural Heritage Areas as identified by the Minister for the Department of Culture, Heritage and the Gaeltacht and any other sites that may be proposed for designation during the lifetime of this Plan in accordance with the provisions of the Habitats and Birds Directives and to permit development in or affecting same only in accordance with the provisions of those Directives as transposed into Irish Law.

HER POL 35

To ensure, where appropriate, the protection and conservation of areas, sites, species and ecological/networks of biodiversity value outside designated sites and to require an appropriate level of ecological assessment by suitably qualified professional(s) to accompany development proposals likely to impact on such areas or species.

HER POL 36

To consult with the National Parks and Wildlife Service and take account of their views and any licensing requirements, when undertaking, approving or authorising development which is likely to affect plant, animal or bird species protected by law.

HER OBJ 35

To ensure that development does not have a significant adverse impact, incapable of satisfactory avoidance or mitigation, on plant, animal or bird species protected by law.

HER POL 45

To ensure that peatland areas which are designated (or proposed for designation) as NHAs, SACs or SPAs are conserved for their ecological, climate regulation, archaeological, cultural and educational significance.

HER OBJ 39

To work in partnership with relevant stakeholders on a suitable peatland site(s) to demonstrate best practice in sustainable peatland conservation, management and restoration techniques and to promote their heritage and educational value subject to Ecological Impact Assessment and Appropriate Assessment Screening, as appropriate, having regard to local and residential amenities.

HER POL 47

To protect the ecological, recreational, educational, amenity and flood alleviation potential of navigational and non-navigational waterways within the County, towpaths and adjacent wetlands.

HER OBJ 42

To undertake conservation works in accordance with best practice on the coastal dune systems subject to ecological impact assessment and Appropriate Assessment, as appropriate.

HER OBJ 60

To encourage, pursuant to Article 10 of the Habitats Directive (92/43/EEC), the management of features of the landscape, such as traditional field boundaries, important for the ecological coherence of the Natura 2000 network and essential for the migration, dispersal and genetic exchange of wild species

INF POL 9

To consider the potential for the provision of temporary water treatment facilities for new developments but only where a permanent solution has already been identified and committed to by Irish Water but has not yet been implemented. The provision of such temporary facilities shall only be considered where the solution is environmentally sustainable and would not affect the quality status of water sources. Adequate provision shall be made by the developer for the operation and maintenance of the proposed temporary facility for the duration of its required existence and thereafter for its decommissioning and removal from site.

INF OBJ 6

To liaise and work in conjunction with Irish Water in their implementation of water conservation measures.

INF OBJ 7

To promote the sustainable use of water and water conservation in existing and new development within the County and encourage demand management measures among all water users

INF OBJ 8

To protect both ground and surface water resources and work with Irish Water to develop and implement Water Safety Plans to protect sources of public water supply and their contributing catchment

INF POL 11

To liaise and work in conjunction with Irish Water during the lifetime of the Plan in the provision, upgrading or extension of wastewater collection and treatment systems in the County to serve existing and planned future populations and enterprise in accordance with the requirements of the Core and Settlement Strategies.

INF OBJ 12

The Planning Authority shall consider the provision of temporary wastewater treatment facilities for new developments only in circumstances where a permanent solution is identified and committed to by Irish Water. The temporary solution shall only be considered where it is deemed to be environmentally sustainable and would not affect the water quality status of receiving waters. Adequate provision shall be made by the developer for the operation and maintenance of the temporary facility for the duration of the operation of the required infrastructure.

INF POL 16

To ensure that all planning applications for new development have regard to the surface water management policies provided for in the GDSDS.

INF OBJ 14

To require the use of SuDS within Local Authority Developments and other infrastructural projects in accordance with the Greater Dublin Regional Code of Practice for Drainage Works.

INF OBJ 15

To require the use of SuDS in accordance with the Greater Dublin Regional Code of Practice for Drainage Works for new developments (including extensions).

INF OBJ 19

To ensure that developments permitted by the Council which involve discharge of wastewater to surface waters or groundwaters comply with the requirements of the EU Environmental Objectives (Surface Waters) Regulations and EU Environmental Objectives (Groundwater) Regulations.

INF POL 29

To facilitate the provision of new, or the reinforcement of existing flood defences and protection measures where necessary and in particular to support the implementation of flood schemes being progressed through the planning process during the lifetime of the Plan. The provision of flood defences will be subject to the outcome of the Appropriate Assessment process.

INF OBJ 22

To ensure flood relief measures are suitably designed to protect the conservation objectives of Natura 2000 sites, and to avoid direct or indirect impacts upon qualifying interests or Natura 2000 sites.

INF OBJ 25

To require the use of Sustainable Urban Drainage Systems (SuDS) to minimise and limit the extent of hard surfacing and paving and require the use of sustainable drainage techniques where appropriate, for new development or for extensions to existing developments, in order to reduce the potential impact of existing and predicted flooding risks.

INF POL 33

To protect recognised salmonid water courses (in conjunction with Inland Fisheries Ireland) such as the Boyne and Blackwater catchments, which are recognised to be exceptional in supporting salmonid fish species.

INF OBJ 30

To ensure the County's natural coastal defences, such as beaches, sand dunes, salt marshes and estuary lands, are protected and are not compromised by inappropriate works or forms of development.

INF OBJ 36

To protect and develop, in a sustainable manner, the existing groundwater sources and aquifers in the County and manage development in a manner consistent with the sustainable management of these resources in conformity with the EU Environmental Objectives (Groundwater) Regulations 2010 and the second cycle National River Basin Management Plan 2018-2021, and any subsequent plan and the Groundwater Protection Scheme.

Table 2: Relevant land use plan policies/objectives relating to the protection of European sites and water quality in Dublin Bay.

CHAPTER 7 - LAND, SOIL, GEOLOGY AND HYDROGEOLOGY

Appendix 7.1 Criteria for Rating Site Attributes – Estimation of Importance of Hydrogeological Attributes (National Roads Authority (NRA, 2009))

Table 1 Criteria for rating site importance of Geological Features (NRA)

Importance	Criteria	Typical Example
Very High	Attribute has a high quality, significance or value on a regional or national scale Degree or extent of soil contamination is significant on a national or regional scale Volume of peat and/or soft organic soil underlying route is significant on a national or regional scale.	Geological feature rare on a regional or national scale (NHA) Large existing quarry or pit Proven economically extractable mineral resource
High	Attribute has a high quality, significance or value on a local scale. Degree or extent of soil contamination is significant on a local scale. Volume of peat and/or soft organic soil underlying route is significant on a local scale.	Contaminated soil on site with previous heavy industrial usage Large recent landfill site for mixed wastes Geological feature of high value on a local scale (County Geological Site) Well drained and/or high fertility soils Moderately sized existing quarry or pit Marginally economic extractable mineral resource
Medium	Attribute has a medium quality, significance or value on a local scale Degree or extent of soil contamination is moderate on a local scale Volume of peat and/or soft organic soil underlying route is moderate on a local scale	Contaminated soil on site with previous light industrial usage Small recent landfill site for mixed wastes Moderately drained and/or moderate fertility soils Small existing quarry or pit Sub-economic extractable mineral resource
Low	Attribute has a low quality, significance or value on a local scale Degree or extent of soil contamination is minor on a local scale. Volume of peat and/or soft organic soil underlying route is small on a local scale	Large historical and/or recent site for construction and demolition wastes. Small historical and/or recent landfill site for construction and demolition wastes. Poorly drained and/or low fertility soils. Uneconomically extractable mineral resource.

Table 2 Criteria for rating impact magnitude at EIS stage – Estimation of magnitude of impact on soil / geology attribute (NRA)

Magnitude of Impact	Criteria	Typical Examples
Large Adverse	Results in loss of attribute	Loss of high proportion of future quarry or pit reserves
Moderate Adverse	Results in impact on integrity of attribute or loss of part of attribute	Loss of moderate proportion of future quarry or pit reserves
Small Adverse	Results in minor impact on integrity of attribute or loss of small part of attribute	Loss of small proportion of future quarry or pit reserves
Negligible	Results in an impact on attribute but of insufficient magnitude to affect either use or integrity	No measurable changes in attributes
Minor Beneficial	Results in minor improvement of attribute quality	Minor enhancement of geological heritage feature
Moderate Beneficial	Results in moderate improvement of attribute quality	Moderate enhancement of geological heritage feature
Major Beneficial	Results in major improvement of attribute quality	Major enhancement of geological heritage feature

The NRA criteria for estimation of the importance of hydrogeological attributes at the site during the EIA stage are summarised in <u>Table 4</u> below.

Table 3 Criteria for rating Site Attributes - Estimation of Importance of Hydrogeology Attributes (NRA)

Magnitude of Impact	Criteria	Typical Examples
Extremely High	Attribute has a high quality or value on an international scale	Groundwater supports river, wetland or surface water body ecosystem protected by EU legislation e.g. SAC or SPA status
Very High	Attribute has a high quality or value on a regional or national scale	Regionally Important Aquifer with multiple well fields Groundwater supports river, wetland or surface water body ecosystem protected by national legislation – NHA status Regionally important potable water source supplying >2500 homes Inner source protection area for regionally important water source
	Attribute has a high quality or value on a local scale	Regionally Important Aquifer Groundwater provides large proportion of baseflow to local rivers Locally important potable water source supplying >1000 homes Outer source protection area for regionally important water source Inner source protection area for locally important water source
Medium	Attribute has a medium quality or value on a local scale	Locally Important Aquifer Potable water source supplying >50 homes Outer source protection area for locally important water source
Low	Attribute has a low quality or value on a local scale	Poor Bedrock Aquifer Potable water source supplying <50 homes

Table 4 Criteria for Rating Impact Significance at EIS Stage – Estimation of Magnitude of Impact on Hydrogeology Attribute (NRA)

Magnitude of Impact	Criteria	Typical Examples
Large Adverse	Results in loss of attribute and /or quality and integrity of attribute	Removal of large proportion of aquifer. Changes to aquifer or unsaturated zone resulting in extensive change to existing water supply springs and wells, river baseflow or ecosystems. Potential high risk of pollution to groundwater from routine run-off. Calculated risk of serious pollution incident >2% annually.
Moderate Adverse	Results in impact on integrity of attribute or loss of part of attribute	Removal of moderate proportion of aquifer. Changes to aquifer or unsaturated zone resulting in moderate change to existing water supply springs and wells, river baseflow or ecosystems. Potential medium risk of pollution to groundwater from routine run-off. Calculated risk of serious pollution incident >1% annually.
Small Adverse	Results in minor impact on integrity of attribute or loss of small part of attribute	Removal of small proportion of aquifer. Changes to aquifer or unsaturated zone resulting in minor change to water supply springs and wells, river baseflow or ecosystems. Potential low risk of pollution to groundwater from routine run-off. Calculated risk of serious pollution incident >0.5% annually.
Negligible	Results in an impact on attribute but of insufficient magnitude to affect either use or integrity	Calculated risk of serious pollution incident <0.5% annually.

Table 5: Rating of Significant Environmental Impacts at EIS Stage (NRA)

Importance of Attribute	Magnitude of Importance								
	Neglible	Small Adverse	Moderate Adverse	Large Adverse					
Extremely High	Imperceptible	Significant	Profound	Profound					
Very High	Imperceptible	Significant/moderate	Profound/Significant	Profound					
High	Imperceptible	Moderate/Slight	Significant/moderate	Profound/Significant					
Medium	Imperceptible	Slight	Moderate	Significant					
Low	Imperceptible	Imperceptible	Slight	Slight/Moderate					

Appendix 7.2 Lands at Ballymakaily - Ground Investigations

APPENDICES

Appendix A	Site and exploratory hole location plans
Appendix B	Borehole logs
Appendix C	Trial pit logs
Appendix D	Trial pit photographs
Appendix E	Dynamic probe logs
Appendix F	Indirect in-situ CBR test results
Appendix G	Geotechnical laboratory test results
Appendix H	Environmental laboratory test results

The works were conducted in accordance with:

 $UK\,Specification\,for\,Ground\,Investigation\,2^{nd}\,Edition, published by\,ICE\,Publishing\,(2012)$

British Standards Institute (2015) BS 5930:2015, Gode of practice for site investigations.

BS EN 1997-2; 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and testing.

Geotechnical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in Ireland

Laboratory testing was conducted in accordance with

British Standards Institute BS 1377:1990 parts 2, 4, 5, 7 and 9 $\,$

METHODS OF DESCRIBING SOILS AND ROCKS

Soil and rock descriptions are based on the guidance in BS\$930.2015. The Code of Practice for Site Investigation

U	Nominal 100mm diameter undisturbed open tube sample [thick walled sampler]
UT	Nominal 100mm diameter undisturbed open tube sample (thin walled sampler)
ř	Nominal 100mm diameter undisturbed piston sample
В	Bulk disturbed sample
LB	Large bulk disturbed sample
D	Small disturbed sample
C	Core sub-sample (displayed in the Field Records column on the logs)
1	Liner sample from dynamic sampled borehole
W	Water sample
ES / EW	Soil sample for environmental testing / Water sample for environmental testing
SPT (s)	Standard penetration test using a split spoon sampler (small disturbed sample obtained)
SPT (c)	Standard penetration test using 60 degree solid cone
xx/xxxx	Blows per increment during the standard penetration test. The initial two values relate to the seating drive (150mm) and the remaining four to the 75mm increments of the test length. The length achieved is stated (num) for any test increment less than 75mm
N=X	SPT blow count 'N' given by the summation of the blows 'X' required to drive the full test length (300mm)
N=X/Z	Incomplete standard penetration test where the full test length was not achieved. The blows 'X' represent the total blows for the given test length 'Z' (num)
V VR	Shear vane test (borehole) Hand vane test (trial pit) Shear strength stated in kPa V undisturbed vane shear strength VR remoulded vane shear strength
dd/mm/yy: 1.0 dd/mm/yy: dry	Date & water level at the borehole depth at the end of shift and the start of the following shift
Abbreviations relating	to rock core - reference Clause 36.4.4 of BS 5930; 2015
TCR (%)	Total Core Recovery: Ratio of rock/soil core recovered (both solid and non-intact) to the total length of core run.
SCR (%)	Solid Core Recovery: Ratio of solid core to the total length of core run. Solid core has a full diameter, uninterrupted by natural discontinuities, but not necessarily a full circumference and is measured along the core axis between natural fractures.
RQD (%)	Rock Quality Designation: Ratio of total length of solid core pieces greater than 100mm to the total length of core run.
n	Fracture Index Number of natural discontinuities per metre over an indicated length of core of similar intensity of fracturing.
NI	Non intact: Used where the rock material was recovered fragmented, for example as fine to course gravel size particles
AZCL	Assessed zone of core loss: The estimated depth range where core was not recovered.
DIF	Drilling induced fracture: A fracture of non-geological origin brought about by the rock coring

Lands at Ballymakaily

1 AUTHORITY

On the Instructions of BCEI, ["the Client"], a ground investigation was undertaken at the above location to provide geotechnical and environmental information for input to the design and construction of a proposed data centre.

This report details the work carried out both on site and in the geotechnical and chemical testing laboratories; it contains a description of the site and the works undertaken, the exploratory hole logs and the laboratory test results. A discussion on the recommendations for construction is also provided.

All information given in this report is based upon the ground conditions encountered during the site investigation works, and on the results of the laboratory and field tests performed. However, there may be conditions at the site that have not been taken into account, such as unpredictable soil strata, contaminant concentrations, and water conditions between or below exploratory holes. It should be noted that groundwater levels usually vary due to seasonal and/or other effects and may at times differ to those recorded during the investigation. No responsibility can be taken for conditions not encountered through the scope of work commissioned, for example between exploratory hole points, or beneath the termination depths achieved.

This report was prepared by Causeway Geotech Ltd for the use of the Client in response to a particular set of instructions. Any other parties using the information contained in this report do so at their own risk and any duty of care to those parties is excluded.

2 SCOPE

The extent of the investigation, as instructed by the Client, included boreholes, trial pits, dynamic probing, soil and rock core sampling, environmental sampling, in-situ and absoratory testing, and the preparation of a report on the findings including recommendations for construction.

3 DESCRIPTION OF SITE

As shown on the site location plan in Appendix A, the works were conducted on the site of agricultural lands in west Bublin, just north of Baldonnell Aerodrome. The site is bounded to the north by the Grand Canal, to the east by the K120 and to the south and west by agricultural fields. The site generally slopes downwards towards the orth east.

August 2015

rage 4

4 SITE OPERATIONS

4.1 Summary of site works

CAUSEWAY

Site operations, which were conducted between $23^{\rm rd}$ July and $21^{\rm st}$ August 2018, comprised:

- fifteen boreholes by dynamic sampling methods:
- a standpipe installation in six boreholes;
- nineteen dynamic probes;
- nineteen machine dug trial pits;
- indirect CBR tests at eighteen locations.

The exploratory holes and in-situ tests were located as instructed by the Client's Representative, as shown on the exploratory hole location plan in Appendix A.

4.2 Boreholes

Fifteen boreholes (BH01-BH15) were put down to completion by light percussion boring techniques using a Dando Terrier dynamic sampling rig. The boreholes were put down initially in 150mm diameter, reducing in diameter with depth as required, down to 50mm by use of the smallest sampler.

The boreholes were taken to depths ranging between 0.5m and 3.4m where they were terminated on encountering virtual refusal on obstructions above their scheduled depth.

Standard penetration tests were carried out in accordance with BS EN 22476-3: 2005 at standard depth intervals using the split spoon sampler (SPT_{00}) or solid cone attachment (SPT_{00}) . The penetrations are stated for those tests for which the full 150mm seating drive or 300mm test drive was not possible. The N-values provided on the borehole logs are uncorrected and no allowance has been made for energy ratio corrections. The SPT handler energy measurement report is provided in Appendix I.

Disturbed (bulk and small bag) samples were taken within the encountered strata. Environmental samples were taken at standard intervals.

Any water strikes encountered during boring were recorded along with any changes in their levels as the borehole proceeded. Details of the water strikes are presented on the individual borehole logs.

Appendix B presents the borehole logs.

August 2018

Page 5

4.3 Standpipe installations

A groundwater monitoring standpipe was installed in boreholes BH05, BH09, BH10, BH11, BH14 and BH15,

Details of the installations, including the depth range of the response zone, are provided in Appendix B on the individual borehole logs.

4.4 Trial Pits

Nineteen trial pits (TP01-TP19) were excavated using an 8t tracked excavator fitted with a 600mm wide bucket, to depths ranging between 0,40m and 2.8m where they were terminated on obstructions.

Disturbed (small jar and bulk bag) samples were taken at standard depth intervals and at change of strata.

Environmental samples were taken at depths of 0.5m and 1.5m in each trial pit.

Any water strikes encountered during excavation were recorded along with any changes in their levels as the excavation proceeded. The stability of the trial pit walls was noted on completion.

Appendix C presents the trial pit logs with photographs of the pits and arising provided in Appendix D.

4.5 Dynamic Probes

Nineteen dynamic probes were conducted adjacent to trial pits using the DPSHB method as described in BS EN ISO 22476-2; 2005. The method entails a 63.5kg hammer falling 0.75m onto a 50.5mm diameter cone with an apex angle of 90°.

Appendix E provides the dynamic probe logs on the sheet following the relevant borehole log in the form of plots, against depth, of the number of blows per 100mm penetration.

4.6 Indirect CBR tests

An indirect CBR test was conducted at eighteen locations (TPO2 – TP19) adjacent to the trial pits using a Dynamic Cone Penstrometer (DCP). The equipment was developed in conjunction with the UK Transport Research Laboratory, is used widely throughout the world, and is referred to in the UK Highway Agency Interim Advice Note 73/86. A DCP test was not undertaken at TP01 due to the presence of made ground.

The test results are presented in Appendix F in the form of plots of the variation with depth of the penetration per blow. Straight lines have been fitted to the plots and the CBR (or each depth range estimated using the following relationship, as proposed by Kleyn & Van Heerden (1963):

Log CBR = 2.632-1.28 Log (mm/blow)

August 2018

Page o

August 2018

Page 7

The frequently elevated CBR values are a consequence of the coarse-grained content of the penetrated soils and are often not representative of the soil matrix.

The as-built exploratory hole positions were surveyed following completion of site operations by a Site Engineer from Causeway Gestech. Surveying was carried out using a Trimble R6 GPS system employing VRS and real time kinetic (RTK) techniques.

The plan coordinates (irish National Grid) and ground elevation $(mOD\ Malin)$ at each location are recorded on the individual exploratory hole logs. The exploratory hole plan presented in Appendix A shows these as built positions.

5 LABORATORY WORK

Upon their receipt in the laboratory, all disturbed samples were carefully examined and accurately described, and their descriptions incorporated into the borehole logs.

5.1 Geotechnical laboratory testing of soils

Laboratory testing of soils comprised:

- soil classification: moisture content measurement, Atterberg Limit tests and particle size
- soil chemistry: pH and water-soluble sulphate content

Laboratory testing of soils samples was carried out in accordance with British Standards Insti BS 1377, Methods of test for soils for civil engineering purposes; Part 1 (2016), and Parts 2-9 (19

The test results are presented in Appendix G.

5.2 Environmental laboratory testing of soils

Environmental testing was conducted on selected environmental soil samples by Chemtest at its laboratory in Newmarket, Suffolk

Testing was carried out for a range of determinants, including:

- Speciated total petroleum hydrocarbons (TPH)

- ycyclic aromatic hydrocarbons (PAH)
- Cyanide
- Asbestos screen

Results of environmental laboratory testing are presented in Appendix H.

6 GROUND CONDITIONS

6.1 General geology of the area

Published geological mapping indicate the superficial deposits underlying the site comprise Glacial Till. These deposits are underlain by limestones and shales of the Lucan Formation.

6.2 Ground types encountered during investigation of the site

A summary of the ground types encountered in the exploratory holes is listed below, in appro

- Topsoil: encountered typically in 200-400mm thickness across the site.
- Made Ground [fill]: reworked clay fill with fragments of red brick, plastic, steel, fabric and concrete Encountered only in TP01 to a depth of 1.8m, close to the canal.
- Glacial Till: sandy gravelly clay, frequently with low cobble content, typically firm or stiff in upper horizons, becoming very stiff with increasing depth. Contains localised pockets of granular material consisting of sandy clayey gravel.

6.3 Groundwater

Groundwater was encountered during percussion boring through soil and in trial pits as water strikes as shown in Table 1 below

Table 1 Groundwater strikes encountered during ground investigation

GI Ref	Water strike (mbgl)	Comments
TP12	2.2	Seepage
TP14	2.1	Seepage
TP15	2.6	Seepage
TP16	1.9	Seepage

August 2018

ails of the individual groundwater strikes, along with any relative changes in levels as works proceeded, presented on the exploratory hole logs for each location.

Groundwater was not noted during drilling at any of the borehole locations. However, it should be noted that the casing used in supporting the borehole walls during drilling may have scaled out any groundwater strikes encountered and the possibility of encountering groundwater during excavation works should not be ruled out. Seasonal variation in groundwater levels should also be factored into design considerations.

Continued monitoring of the six installed standpipes will give an indication of the seasonal variation in groundwater level

7 DISCUSSION

7.1 Proposed construction

It is proposed to construct a new data centre on the site.

No further details were available to Causeway Geotech at the time of preparing this report and any designs based on the recommendations or conclusions within this report should be completed in accordance with the current design codes, taking into account the variation and the specific details contained within the exploratory holes. Causeway Geotech were commissioned to provide a geotechnical report, and it is outwith our remit to advise on structure design.

7.2 Recommendations for construction

Based on the presence of stiff glacial till and possible bedrock at relatively shallow depths across the footprint of the proposed building, the implementation of traditional shallow (spread) foundations (strip/pad) are considered suitable.

7.2.2 Soil strength parameters

When estimating the shear strength of fine soils (silt/clay), reference is made to the results of Standard Penetration Tests (SPT's) carried out within the boreholes. The undrained shear strength of fine soils can be estimated using the correlation developed by Stroud & Butler.

where fi is typically in the range 4 to 6. A median fi value of 5 is adopted for this report.

For granular sais (sand/gravel), a graphical relationship between SPT 'N' value and angle of shearing resistance, w has been developed by Peck, Hanson and Thorburn. This is published in Foundation Design and Construction (Tomilinson, 2001) and is referenced in this report when deriving angles of shearing resistance for the gravet soils.

7.2.3 Bearing resistance

The ultimate bearing resistance for conventional strip or pad foundations can be obtained from Brinch Hausen's general equation:

$$q_n = cN_c s_c d_c l_c b_c + p_o N_q s_q d_q l_q b_q + \frac{1}{2} \gamma B N_\gamma s_\gamma d_\gamma l_\gamma b_\gamma$$

- undrained cohesion of soil B = foundation width

 p_n = effective overburden pressure at foundation level Nc, Nq, Ny = bearing capacity factors s_0 , s_n , s_1 = shape factors

 a_0 , a_0 , a_1 = stupe factors a_0 , a_0 , a_1 = depth factors a_1 , a_0 , a_1 = load inclination factors a_1 , a_0 , a_1 = base inclination factors

For conventional strip and pad foundations constructed on fine soils, the general equation has been simplified by Terzaghi to:

Net ultimate bearing resistance = ϵN_c

where

 ϵ = undrained cohesion $N_{\rm s}$ = bearing capacity factor

For cohesionless soils [sand/gravel, c+0], the calculation of ultimate bearing resistance is gener required only for lones sands. This is because coarser gravel soils would not be expected to suffer a hea capacity failure. However, limits are placed on the allowable bearing resistance in order to cor settlement. For hallow conventional pad foundations on granular soils. Terzaght's simplified equation be used as follows:

 $q_n = p_0(N_c+1) + 0.4BN + p$

August 2018

Page 10

August 2018

Page 11

p = total overburden pressure

is obvious from the equations 1 to 3 that some knowledge of the foundation width and depth is require fore the ultimate bearing resistance can be calculated.

Table 1 provides an indication of minimum founding depth at each borehole location. Also shown are approximate soil strengths based on the Stroud and Butler (1975) correlations with SPTN-values and visual examination of recovered samples of the clay deposits.

The table also suggests allowable bearing resistance using Equations 2 and 3 for cohesive and cohes

This table does not take into account the variations in soil composition, and the effects of differential movement within a particular structure. Calculation of the design bearing resistance over the entire structure will entail a knowledge of the magnitude and distribution of the structural actions.

7.2.4 Foundations and ground floor construction

ndations should transfer loading to below any Made Ground or subsoil. The recommended found struction and allowable bearing pressure (ABP) at the borehole locations are presented in Table 1

Table 1: Construction recommendations

Borehole	hole EGL* to Estimated suitable bearing stratum		below EGL* to Estimated Strata suitable ABP (kPa) description bearing		Ground floor construction	Groundwater	
BH01	1.0m	>250	Stiff Glacial Till/Possible bedrock	Strip & pad	Ground bearing	Not encountered	
BH02	1.20m	>250	Stiff Glacial Till	Strip & pad	Ground bearing	Not encountered	
BH03	1.20m	>250	Stiff Glacial Till	Strip & pad	Ground bearing	Not encountered	
BH04	1.20m	230	Stiff Glacial Till	Strip & pad	Ground bearing	Not encountered	
вноѕ	1.20m	160	Stiff Glacial Till	Strip & pad	Ground bearing	Not encountered	
BH06	0.50m	>250	Possible bedrock	Strip & pad	Ground bearing	Not encountered	

Borehole	Depth below EGL* to suitable bearing stratum	Estimated ABP (kPa)	Strata description	Foundation type	Ground floor construction	Groundwater	
BH07	2.0m	>250	Stiff Glacial Till	Strip & pad	Ground bearing	Not encountered	
BH08	1.20m	220	Stiff Glacial Till	Strip & pad	Ground bearing	Not encountered	
ВН09	1.20m	>250	Stiff Glacial Till	Strip & pad	Ground bearing	Not encountered	
ВИ10	1.20m	200	Stiff Glacial Till	Strip & pad	Ground bearing	Not encountere	
BH11	1.20m	>250	Stiff Glacial Till	Strip & pad	Ground bearing	Not encountered	
BH12	1.20m	>250	Stiff Glacial Till	Strip & pad	Ground bearing	Not encountered	
BH13	1.20m	>250	Stiff Glacial Till	Strip & pad	Ground bearing	Not encountered	
BH14	1.20m	130	Firm Glactal Till	Chain C and	Ground	Not encountered	
2.0m	>250	Stiff Glacial Till	Strip & pad	bearing	Not encountered		
BH15	1.20m	200	Stiff Glacial Till	Strip & pad	Ground bearing	Not encountered	

Based on the findings of the site investigation, spread foundations (strp/pad) are considered suitable with estimated allowable bearing pressures between 130kPa and 250kPa td depths between 0.5m and 1.5m on stiff glacial 10ll or possible between. If foundations are designed to be constructed on bedreck, it is recommended that rotary drilling is undertaken determine rock strength across the site, as this will aid in

The base of foundation excavations should be thoroughly inspected; any soft soils should be removed with the resultant void backfilled with STI concrete. A consistent bearing stratum should be provided for any building unit to limit differential settlements.

Given the generally fine grained/cobesive nature of the soils throughout the proposed formation levels, excavations for foundations are likely to be relatively stable. However, any instability can be minimised by battering the side slopes at 2 vertical to 1 horizontal and by limiting the duration that the accusation is open. Groundwater control, where required, will be possible by pumping from sumps formed in the base of

Floor slabs should not bear directly onto Made Ground or soft soils. The use of ground bearing floor slabs is only appropriate following the removal of any surface Made Ground and soft day layers and their replacement using well-graded well-compacted granular fill. However, a suspended floor slab should be adopted where the difference in levels of the proposed floor and the base of Made Ground/soft soils is greater than 600mm.

7.2.6 Excavations for services

For the installation of services ducts/trenches, it is suggested that open trenching will be the most practicable construction method. Generally speaking, the ground conditions should render the use of open trenching by backhoe excavator possible. Localised rock breaking may be required depending on the invert level of services in the west of the site. This my be possible using a hydraulic rock breaker depending on the strength of the rock.

Where working in open trenches, it is thought that trench support systems, by way of a trench box may be required to maintain trench stability and safe working conditions. Groundwater control at these locations should be possible by means of sump pumping.

To preclude the eventuality of differential settlements in pipes, they should be laid on a consistent stratum of appropriate allowable bearing capacity and protected with appropriate fill cover.

Where ducts and chambers must be installed in areas where localised soft spots are encountered, the use of geogrid reinforcement along the base of the very soft/soft sofl (e.g. peat) below the trench base is recommended. This will stiffer the base of the trench and help control longitudinal differential settlement.

Backfilling of trenches may be completed by using compacted CI 804 granular fill and reinstated as

7.2.7 Soil aggressivity

sessment of the Aggressive Chemical Environment for Concrete (ACEC) was undertaken thi nce to the Building Research Establishment (BRE) Special Digest 1 (2017).

As noted by BRE Special Digest 1, sulphates in the soil and groundwater are the chemical agents most likely to attack concrete. The extent to which sulphates affect concrete is linked to their concentrations, the type of ground, the presence of groundwater, the type of concrete and the form of construction in which concrete is used.

BRE Special Digest 1 identifies four different categories of site which require specific procedures for

- Sites not subjected to previous industrial development and not perceived as containing pyrite.
- Sites not subjected to previous industrial development and perceived as containing py Brownfield sites not perceived as containing pyrite.

 Brownfield sites perceived as containing pyrite.

For the purposes of this report the site was classified as not having been subject to previous industrial development and perceived as potentially containing pyrite.

The results of chemical tests (pH and water-soluble sulphate contents) on soil samples indicate Design Sulphate Class DS-1 and ACEC Class AC-1 - reference Table C1 of BRE Special Digest 1 (Building Research Exablishment, 2005). The Special Digest does not require any measures to protect underground concrete elements greater that 140mm thick.

7.2.8 Access roads, car parks and hard standing

Based on the strata descriptions and the results of in-situ indirect CBR tests (DCP), the following design CBR

- less than 2% at locations where the sub-grade is formed in Made Ground, requiring a 600mm thick
- A value of 4% at depth of 1m, is appropriate where stiff Glacial Till is encountered at sub-formation

Although the CBR value increases with depth, with a value of above 5% below a depth of 300mm, the required construction thickness should be determined by the minimum long-term equilibrium CBR value of the Glacial Till. The value of 4% stated for a depth of 300mm is based on the soil plasticity, as per Table 2.1 of volume 7 section2 of the Design Manual for Roads and Bridges, assuming average construction conditions. A CBR of 4% requires a 300mm thick capping layer.

The use of geosynthetics in the construction of paved areas, will be beneficial, particularly in areas of Made Ground. These could include a geosynthetic (e.g., a geogrid) at subgrade level with further benefit gained by incorporating further layers] within the capping subs-base layer.

7.3 Site contamination and waste disposal

Selected soil samples were analysed for a range of potential contaminants including

- Speciated total petroleum hydrocarbons (TPH);
- Speciated polycyclic aromatic hydrocarbons (PAH);

August 2018

August 2018

Page 15

- Phenols; and Asbestos screening

Samples were also tested for a Waste Acceptance Criteria (WAC) suite to assess the potential categor of waste from the site.

In the initial examination of the potential risk of site contamination, the laboratory results have been compared to the following available assessment criteria relevant to the proposed land use:

the Environment Agency Soil Guideline Values (SGVs) published, in 2009. These relate to arsenic, mercury, selenium, cadmium, benzene, toluene, ethylbenzene, xylenes, and phenol.

The results from theselected samples do not identify significantly elevated concentrations above the SGVs where criteria are available.

It should be noted that the above assessment is based on the results, of the tested soil samples against publicly available criteria. No further assessment has been undertaken where criteria are not available. Any potential contamination identified during site development by visual or offactory means should be investigated, including further laboratory testing, and appropriate health & safety, waste disposal and

In assessment of the disposal of waste, the test results have been compared with the European Union Directive limits for Inert waste landfill, Stable, Non-reactive hazardous waste in non-hazardous landfill and hazardous waste landfill criteria.

From the thirty samples tested for WAC analysis, material from the site may potentially be classified as inert/non-hazardous. It is noted however that any material excavated for off-site disposal would a Waste Classification following the guidance in the National Hazardous Waste Management Plan [EPA, 2014]

REFERENCES

inical Society of Ireland (2016), Specification & Related Documents for Ground Investigation in

IS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part Z Ground investigation and testing.

BS 1377: 1990: Methods of test for soils for civil engineering purposes. British Standards Institution.

BS 5930: 2015: Code of practice for ground investigations. British Standards Institution.

BS EN 1997-2: 2007: Eurocode 7 - Geotechnical design - Part 2 Ground investigation and texting. British

BS EN ISO 14688-1:2018: Geotechnical investigation and testing. Identification and classification of soil. Part 1 Identification and description. British Standards Institution.

BS EN ISO 14688-2:2004+A1:2013: Geotechnical investigation and testing. Identification and classification of soil. Part 2 Principles for a classification.

BS EN ISO 22476-3:2005+A1:2011: Geotechnical investigation and testing. Field testing. Standard

Building Research Establishment (2005) BRE Special Digest 1, Concrete in aggressive ground.

Contaminated Land Report (CLR) 11, (2009) Model Procedures for the Management of Land Contamination, The Department for Environment, Food and Rural Affairs (Defra) and the Environment Agency.

4.0			Projec			t Name:	Trial Pit No.:		
- 20°	CAUSE	WAY	18-082			at Ballymakally	1 1	TP02	
000	GE	OTECH	2000	Co-ordinates: Client:			Sheet 1 of		
-		20,02,07	30268	E 63 L	BCEI		216		
Aethod: rial Pitting			23213	5.26 N	Client's	s Representative:	Scale	1:2	
Plant:			Ground Level:		BCEI Date:		-	1000	
Tracked to	cavator		67.3	3 mOD	25/07/	2018	Logge	m MN	
Depth (m)	Sample / Tests	Field Records	Level	Depth (m) (Thickness)	Legend	Description	1		
(4)			(1100)	(Committee)	XX	TOPSOL. From light greysts brown slightly sandy CLAF with roothets. Sand is	1		
				(0.40)	88X	fine to coarse.	11		
1.30	151			1			11		
			66.92	0.40	5,252	End of Ner pe at 5 40m	1		
				1		0.0000 4.000 4.000 7		9.0	
			1	1					
								14	
				1					
								L	
				-	1		Ш	14	
					n 1				
					II. I				
								9.6	
							11	ju.	
							ш		
							ш		
								63	
				-				3.00	
								193	
								- 50	
							Ш		
marks						Water Strikes: Sta	bility:	-	
groundwate	or encountered					Struck at (mi). Remarks: Sta			
							0.007	C493~	
							ldth:	1.00	
munuted on	possible bedrock					Le.	ngth:	3.00	

200	Project No.: 18-0827			Project Name: Lands at Ballymakally				Pit No.:		
963	CAUSE	WAY		dinates:	Client					TP03
0.5		OTECH	100000		BCEI				She	et 1 of
Method:			30283	2.23 E		s Representative:	_			_
Trial Pitting			23208	7.26 N	BCEI				Scale	1.2
Plant:			Groun	d Level:	Date:					73/4
5T Tracked E	xcavator			0 mOD	23/07/	2018			Logg	er: MM
Depth (m)	Sample / Tests	Field Records	Level	Depth (m) (Thickness)	Legend		Description		1	
				IG 201	XX	TOPSOIL Firm light greyith brow	en dightly sandy C	LAY with rootlets.		
	1 1		64.90	0.20	.,	Stiff light brown slightly sandy st	atti enel Di	Or Samed in Street Co.		
						Gravel is subangular to angular f	ine to coarse of t	mestone.		
0.50	81			(0.40)						
5.50	02		64.50	0.60	200					
			100	1	20 -20	Stiff dark grey slightly sandy grav subangular to angular of limesto	refly CLAY, Sænd 15 one: Possible: wea	fine to openie. Go thered rock	evet is	
				(0.40)	00-0	1				
1.00	83		6410	100	6°-2	1				
1.00	De		64.00	100 90100 110	11.5	Dark angular CORRLES of limesto	one with dark clay	my subangular to a	restar	100
1.00	655		1	1		Dark angular CORRLES of limesto fine to coarse CRAVEL of limesto End of	trial pit at 1.10m		-11	
				1						
				1						**
										160
				1		10				
	1 1			1						
										100

										40-
				1						
										43.
				1						
				1						
lemarks	er encountered						Water	Strikes:	Stability:	
- grow-cast	- L-Womened					1	Struck at (m):	Remarks	Stable	
						1			Width	0.50
	possible bedrock								Length:	3.00
erminated on	possible bedrock				_					

4.4			Projec	No.:	Projec	Name:			Trial	Pit No.:
4000		-	18-082			at Ballymakally				TP04
- 0 a	CAUSE		Co-ord		Client					
437	GE	OTECH	30290	8 22 F	BCEI				She	et 1 of
Aethod:					Client	Representative:			- 100	37.65
rial Pitting			23212	6.02 N	BCEI				Scale	1:2
lant:	-J-ordina			Level:	Date:	HINGS.				1824
T Tracked Ex	scavator			5 mOD	24/07/	2018			Logge	er: MN
Depth (m)	Sample / Tests	Field Records	(mOD)	Depth (m) (Thickness)	Lagend		Description		1	
			1,000		XXX	TOPSON				
				(0.10)	1					
			63.86	0.10			44		-	
	100		000000		0.00	Brownish grey slightly sandy slig Sand is fine to coarse. Gravel is	subangular to ang	ular of limestone.	Prisery.	
50	05 81			10.501	000	Cobbles are subangular to subit	ounded of limesta	M	11	10
50	ES3				63	1				
			63.36	0.80	603					
					100	Grey sandy slayey angular fine to coarse i Possible Weathered I	to course GRAVEL	of Imestone, San	t is fine	
00	64			-	-					100
				10.501	4					
			2000		-					
			62.86	1.30	-	Deta	tivi pt w 1 30m			
										17.4
										4.6
				0						64
									- 11	1.00
									- 11	744
										- 55
			1							
										0.0
			1 0							
										41
			1							
marks.							1000	Strikes:	Stability:	
	er encountered						1000///	200	Stabile Stable	
							Struck at (m):	Remarks:	-	
									Width:	0.80
omented	possible bestrock								Length:	3.00

CAUSEWAY		18-08.	17	Project Name: Lands at Bellymakally			Trial Pit No.: TPOS		
680	GE	OTECH		linates:	Client:		5	heet 1 of	
Aethod:			30256	1.53 £	BCEI	Representative:	- 12		
rial Pitting			23205	3.03 N	BCEI	nepresentative.	Sca	ie: 12	
lant:			Groun	d Level:	Date:	-			
Tracked E	Acayator -			4 mOD	25/07/	2018	Log	ger: MN	
Depth (m)	Sample / Tests	Field Records	(reQQ)	Depth (m) (Thickness)	Lagend	Description	1		
			10000	E 201	1000	TOPSOIL: Firm brown slightly sandy CLAY with routlets.	Ť		
			68.54	0.00	Jeres		-		
				60.20)		Light grey samp tabular fine to coarse GRAVEL with medium sobble content. Sand is fine to coarse. Cobbles are tabular of impetance.			
			68.34	0.40	2,41	End of trial pit at 0.40m	-		
								:30	
				-				388	
				8					
								0.0	
							- 1		
								17	
	1 1								
								744	
							- 10		
	1 1						- 111		
								744	
							- 111		
							- 1	140	
								11	
	1 1								
	1 1								
			_				_		
marks					_	Water Strikes:	Stability		
groundwate	er encountered						Stable		
						2000	· ·	- Fig. 200	
							Width	1.00	
eministed on	possible boulder						Length	3.00	

20.			Project 18-08J			: Name: et Ballymakally	Trial Pi	t No.: PD6
20	CAUSE	:WAY		inates	Client:		1	
- 5	GE	OTECH	30268	7.48 €	BCEI		Sheet	1 1 of 1
Aethod:			-	2.61 N	Client	s Representative:	Scale	
rial Pitting					BCEI		Scale:	1.25
T Tracked i	Acayvator			d Level: 7 mDD	Date: 23/07/	2018	Logger	MM
Depth (m)	Sample / Tests	Field Records		Depth (m) (Thickness)	Legend	Description	1	
			10.00	10.201	XXX	TOPSOIL: First light brown sandy CLAY with rocciets.		
			86.57	0.20	- 1	Grey slightly sandy slightly clayer hire to coarse GRAVEL with low cobble		
					3	content. Sand is fine to oparse. Gravel is angular fine to course of		
130	81			(0,40)		Imestone. Coboles are angular of limestone		
150	0.2		66-17	060				
50	133				1130	form to stiff dark brownish gray slightly sandy slightly gravelly CLAF with low cobbin content. Sand it fine to coarse. Gravel is subangular to angular		
	1 1					Cobbles are subangular of limestone		
			10.3		Y Alta			
					20			14
					27			
			1		135			
			1	(1.70)	200			
50 50	BA DS			10,149	2 M			11.
50	154				T. CY			
					200			
				1	1			
				-	20			16-
			64.47	2.30	Cor.			
			1		T. IT	Self stark grey slightly sandy slightly gravelly CLAF with low cookie content. Sand is fine to course. Gravel is subangular fine to course of limestone.		
50	BIT DB			10.401	100	Sand is fine to counce. Gravel is sublangular fine to course of investone. Coobles are sublangular of limestone.		88
1.50	Dis		2000		$\mathbb{Z}_{\geq T}$			
	1 1		64.07	2.70	m.E. quil	Ent of that pit at 2.70m		
			1 3	1				
				-				14 -
								64
								10.0
								43
			1					
	1							
emarks o groundwa	ter encountered					Water Strikes: Sta	bility.	
1	CONTRACTOR OF THE PARTY OF THE					Struck at (m): Nemarks: 5ta	init.	
							idth:	8.50
							neth:	5.00

2200			Project 18-08			Name: et Ballymakally		No.:
- 529	CAUSE	WAY			Client			
- 5	GE	OTECH	100000	7.78 E	BCEI		Sher	et 1 of
Aethod:			20000			Representative:		1/2
rial Pitting					BCEI		SCURE!	11/2
Nant: I Tracked E	rangtor				Date: 23/07/	2019	Logger:	
Depth	Sample / Yests	Field Records	Level	Depth (m)		Description	1	
(m)	100,000	740 4000	(mOD)	(Thickness)	Collector	TOPSOIL: Firm grayish brown slightly sandy CLAV with rootlets. Sand is fine		
			65.43	0.20	28	to coarse		
			90.49	0.20		Soff light greyish brown sightly cardy gravelly CLMF with low cobble content. Sand is fine to coarse. Gravel is subangular to subrounded of		
				(0.50)	100	limestone. Cobbles are subangular to sub rounded of limestone.		
150	81			10,225	A 10		111	**
50	853		64.91	0.76	1	SMM dark grey slightly vandy slightly gravelly CLAY with low cobbin content.		
			, assette	1	4	Sand is fine to coarse. Gravel is subangular to angular fine to coarse of		
				(0.50)	114	Imestone. Cobbles are subangular of limestone.		
10	84				24			- 14
10	05		64.43	1.20	45	End of that pit at 1.20m	-	
								1.0
				-				100
				1				
								2.8
				1				
								14
				1				
								43.
				1				
								**
			1					
marks proundwark	er encountered						ability:	
						Struck at (m) Remarks: 511	able:	
						(44	ridth	0.50
erminated on	possible bedrock					i.	mgth	150
married Dri	properties arranges.						- 60	_

100			18-OK			Name: it Ballymakally	Trial Pi	t No.:
0.00	CAUSE	WAY			Client			_
- 5	——GE	OTECH			BCEF		Sheet	1011
Method:				0 68 N		Representative:	Scale:	1.2
rail Pitting Sent:			200000		BCEI		110	
Tant: Tacked E	scavator			d Level: 7 mOD	Date: 25/07/	2018	Logger: M	
Depth	Sample / Tests	Field Records	Level	Depth (m) (Thickness)	Lagend	Description	1	_
(mt)	CONTRACTOR .	XXXXXXXXXXX	(MOU)	(TRACKINGSE)	NX.	TOPSOIL Firm light greynh brown slightly sandy CLAY with roctiets.	- 1	
				(0.30)	X			
			63.97	0.80		Self light brown sandy slightly gravelly CLAY. Sand is fine to coarse		
				(0.10)	10			85
			63.67	0.60	100	End of any pt at 0.60m	-	
				-				in
								927
								11
								38
			11					
								**
	1			ĺ				
								345
			1					
								**
							100	
								**
marks						T	Stability:	_
	er eccountered					Water Strikes:	Station .	
						across so jung. Remarks:	-	0.50
							Width	
emurated on	possitiv large boul	ider/bedrock					Length;	3.50

	CAUSE	WAY	Project 18-082	7	Lands a	Name: at Ballymakatly	Trial Pit No.: TP09		
- 36		OTECH		2.08 E	BCEI		She	et 1 of 1	
Method: Trial Pitting				7 03 N		s Representative:	Scale	1 1:25	
Hant:				d Level:	BCEI:				
81 Tracked E	xcavator		.68.9	2 mOD	25/07/	2018	Loge	eri MM	
Depth (m)	Sample / Tests	Field Records	(mOD)	(Thickness)	Legend	Description	1		
121				10.201		TOPSOIL: Firm light greysh brown slightly sandy CLRY with rectiets.	П		
			6#.72	0.30	-	Light brownish sandy clayer angular fine to charse GRAVEL of brestone	-		
						with medium zobbie content. Sund is fine to starse (Possible Weathered Beshock)			
3.50	E230 E230			10.708			11	69 -	
3.50 3.50	m								
			68.02	0.90		Ent of the prof 0.90m	- 1		
								14-	
					l ï			11	
					l) i			18-	
							14		
					1				
				ŀ				18	
								30-	
								99.	
								1.0	
								44.	
emarks						Water Strikes: St	ability:	_	
io groundwat	er encountered						able		
							Vidth:	1.00	
erminated or	possible begross						ength:	3.00	

0.0			Projec	No.:	Projec	Name:	Trial Pi	t No.:
0262s	CAUSI	EWAY.	18-082			et Ballymakaily	TI	P10
100		OTECH	Co-ord	inates:	Client		Sheet	
			30262	2.64 E	BCEI		anee	101
Method: Ital Pitting			23193	8.93 N		s Representative:	Scale:	1992
lant:				d Level:	BCEI Date:			
T Tracked E	ecayator			5 mOD	23/07/	2018	Logger	MM
Depth	Sample / Tests	Field Recards	Level	Depth (m)	Japan .	Description	1	
(=)		1	(m00)	(Thickness)	10000	10PSOL Firm light brown slightly sandy CLAY with rootlets.	-	
			67.03	(0.20)				
			67.05	0.20	1	Sniff brown slightly sandy slightly grawilly CLAY with low cobolic content. Sand is fine to coone. Gravel is subangular fine to coarse of limestone.		
					X 325	Cobbles are subangular of limestone.		
150	0.1			1		Commence of the Commence of th		**
58	D2 E33			(0.40)	533			
	1000			ŧ				
				1				
			66.25	1.00	4 41	Grey subangular to subrounded CDBBLES with a infill of sandy clay	-	14
					1	The second secon		
				(11.40)				
			63.85	1.40				
50	84		1	10,000	a oth	Dark greyish brown slightly sandy slightly gravelly CLAT with low cobble content. Said is five to coarse. Orsiel is subangular to subrounded fine to		Ü
50 50	DS ESA				1	course of mixed lithologies. Cobbles are subangular to subrounded of imestorie		
				1	155	and the second s		
			+					
				2000	61.69			11
				(1.30)				
					1137			
				İ	01.02			
								- 11
				į.	17			
			64.55	2.70	and the last	End of that pit at 2 70m	-	
				1		100000000000000000000000000000000000000		
								10
			(1)					
								44
				1				
					1 0			
marks						St.	ability:	
	er encountered					9	uble	
						Struck at (m): Remarks:	VI TO 4 10	
							Mdth:	0.50
	very stiff clay					i i	ngth	3.50

20			Projec			Name:		Pit No.:
0.00	CAUSE	WAY	18-082			at Ballymakally		TP11
6.0	GE	OTECH	10,700		Client		She	et 1 of
-	- SA:	574/20200	30273	6.08 E	BCEI			
Method: Irial Pitting			23193	8.58 N		s Representative:	Scale	1 12
Plant:			Com	d Level:	Oute:			-
ST Tracked E	xcavator		65.8	5 mOD	23/07/	2018	Loge	er: MA
Depth	Sample / Tests	Field Records		Depth (m) (Thickness)	Legend	Description	1	
(m)		1000000	(11100)		N/33/	TOPSOIL: Firm greyish brown slightly sandy CLAY with rootlets.	3	
	1 1		45.65	0.20				
			-	630	1	Stiff light yellowish brown sandy slightly gravelly CLAY. Sand is fine to coorse. Stavel is subangular to angular fine to coorse of litnestone		
	1			(0.40)	12			
150	102				0.10			86
150	153		65,25	0.60		Stiff dark grey very sandy slightly gravelly CLAX Sand is fine to coorse.		
.80	84			(0.40)		Stiff dark gives very sandy alightly goverly CLAR Sand in fine to soons. Gover is gubangular to angular of limestone. Possible weathered rock. Fine of foliol set at 1 00m.		
0.80	05			1	1.5			
			64.85	1.00	10,00	End of trial pit at 1.00m		18
								6.6
				1				
				l				
				ŧ				14
				1				
)4
								8.0
								- 11
								4.5
								- 44
emarks						Water Strikes:	Stability:	
o groundwat	er encountered					THE STATE OF	Stable	
						Stryck at (m): Remarks:	10 V 10 V	Trans.
							Width:	0.60
	possible bedrock						Length	4.00

CAUSEWAY GEOTECH GEOTECH Server of Committee	120	Projec			Name:	Trial Pit No.			
Sheet 3 of Strong Stron	0.00	CAUSE	WAY					\perp	TP13
State 1 State Stat	9							51	eet 1 of
23-18-09-72 to Compare Investigation and property from the Compare	Method:			30249	8.69 E		Representative:	1	100-30-
Service of Controller (1982) Servic	ial Pitting			23185	9.71 N		representative.	Sca	le: 1:
Total Support Name Facility Records Facility Re	lant:	_		Groun	d Level:			+	
Part Company		Excavator				24/07/	2018	Log	ger: Mi
So to the second	Depth	Sample / Tests	Field Records	Level	Depth (m)	Legund	Description	1	
87.55 C. Market and the control of t				1,125.52		Sex	TOPSON,	121	
Section 1 and 1 an					(0.10)			ш	
See 15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				67.15	0.30	1	Stiff light grayish brown slightly sandy gravely CLAF with low subble	+ 1	
So to the second	50	. 1			20.00		content. Santi is fine to coatse Gravel is subangular to angular of limestons	ч	77.00
Set of two plants are projected as the set of two plants	50	02			(0.40)			Ш	
Solida in the country of the country	30	153		66.75	0.70	-	Self brown slightly sports tightly grouply (1.8) with low rebble contest	41	
10 St. 15		1 1				2.7	Sand is fine to coone. Gravel is subangular to angular of linestone.	П	
SS 39 2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							Course wa mondays to sudden to messions		77.64
SS 39 2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						3		П	100
SS 39 2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1									
SS 39 2 10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1						E.			
St. 25 2 2 30 are well as a grant proving the province of the control of the cont	50	H			(1-40)	- 4		Ш	
SS. 20 2.00 are well and you registry area properly generic Culif with his color of the color of	50	05				35		Ш	
See a service of the property of the service of the	~	L.S.		1		255			
See a service of the property of the service of the								П	
See a service of the property of the service of the								11	94
So S S S S S S S S S S S S S S S S S S		1 1		62.35	2.10		very stiff park gray slightly sandy slightly gravelly CLAP with low contin	+ 1	
ALS 2 AD Employment Modern on quadraged Water Software on quadraged Water Software (S. 200) Water Software (S. 200) Water Software (S. 200) Water Software (S. 200) Water (S. 200) Water (S. 200)						1	content. Send is fine to coarse. Graver is subangular to submounded fine to		
ALS 2 260 English from all of 7 85m Water Solder Sold from all of 7 85m Water Solder Sold from all of 7 85m Water Solder Water Solder Sold from all of 7 85m Water Solder Water Solder Sold from all of 7 85m Sold f	40	97			lane of	20	A CONTRACTOR OF THE CONTRACTOR		
The of these at all 2 Mode. Water Societies: Studies of the act	40	DR			(0.70)	2.47			14
The of these at all 2 Mode. Water Societies: Studies of the act									
The of these at all 2 Mode. Water Societies: Studies of the act				66.65	2.80	1 61			
groundwater encountered Stock at [m] Necessaria Stock Widelin C 80							End of this jet at 2.80m		
groundwater encountered Stock at [m] Remarks: Stock or [m] Width: G 80		1 1							744
groundwater encountered Stock at [m] Remarks: Stock or [m] Width: G 80		1 1						Ш	
groundwater encountered Stock at [m] Remarks: Stock or [m] Width: G 80								Ш	
groundwater encountered Stock at [m] Remarks: Stock or [m] Width: G 80								Ш	
groundwater encountered Stock at [m] Necessaria Stock Widelin C 80								Ш	
groundwater encountered Stock at [m] Necessaria Stock Widelin C 80								Ш	
groundwater encountered Stock at [m] Necessaria Stock Widelin C 80								ш	
groundwater encountered Stock at [m] Necessaria Stock Widelin C 80								Ш	
groundwater encountered: Struck at [mt] Necessaries Stable									
groundwater encountered: Struck at [mt] Necessaries Stable									
groundwater encountered: Struck at [mt] Necessaries Stable									
groundwater encountered Stock at [m] Necessaria Stock Widelin C 80									
groundwater encountered Stock at [m] Necessaria Stock Widelin C 80									0
goundwater encountered: Stock at [mt] Remarks: Stock Memories: S								П	
goundwater encountered: Stock at [mt] Remarks: Stock Memories: S					1				
groundwater encountered: Stock at [mt] Remarks: Stock at [mt] Width: G 80				-				11	
Struck at (m). Nermania: Weith: 0.80	marks				-				7
	E-O-COWAT	er eraparterer.					Struck at (m): Remarks: Str	ble	
								fidth:	0.80
		Total Co.							3.50

202			Projec		Project		11114	Pit No
0 20 21	CALIS	EWAY	18-082			at Ballymakarly		TP14
0001		EOTECH	Co-ord	inetes:	Client		50	eet 1 c
- 47		e e e e e e e e e e e e e e e e e e e	30260	3.77 €	BCE	No.	31	*****
Method: Ital Pitting			23186	0.37 N		Representative:	Scal	e: 1
September 1			200		BCEI		3/4	80. 63
Nant: IT Tracked Ex	Causton			Level: 2 mOD	Date: 23/07/	2018	Log	ger: M
Death Death	1	1000000	Level	Depth (m)			-	
(m)	Sample / Tests	Field Records	(=00)	(Thickness	Legend	Description	į	
				(0.20)		Firm light grayish brown slightly sandy CLAY with rootiets.		
			66.72	0.20	V.	Light brown slightly candy slightly gravelly CLAY with low cobble conten	e.	
					100	Sand is fine to coorse. Gravel is suborquiar to angular of limestone.		
0.50	81					Cobbles are subangular of Imestone.		
0.50	D2			(0.70)	0.07			
					1			
					107			
			66.02	0.90	-	Grey signtly sandy slightly gravelly CLBT with low cobble content. Sand	n.	
				(0.30)	1.4	fine to coarse. Gravel is subangular to angular of limestone. Cobbles an subangular of limestone	4	
			65.72	1.20	17			
			20.7			Firm dark gray slightly sandy slightly growilly CLAY with medium cobbin content. Send in fine to course. Gravel is subangular fine to usarse of		
	1				100	Imestone Cobbles are subangular to subrounded of Smestone		
50 56	81			(0.60)	17			
-					m			
			65.12	1.80	1			
			40.14	97		Soft to firm dark gray slightly sandy slightly gravelly CLAY with low cobt content and high boulder content. Sand is fine to coarse. Gravel is		
00)	as			(0.40)	1	subangular to angular of limestone. Cultivies and boulders are subangu		
.00	D6	Seepage at Z 10	The same	950	200	of limestone	×	
			64.72	2.20	-	End of trial pit at 2.20m		
		ľ						
	1							
				-				
	1							
marks	_		1	-		Water Strikes:	Stability	
						Struck et Im2 Remarks:	Stable	
						2.10 Scryuge et 2.10	Width	0.5
							Length:	15
	possible bedro							

0.0			Project			Name:			Trial P	t No.:
000	CAUSE	WAY	1B-083			et Staffyrrunkarly			1	P18
000	CAUSE	OTECH	100000	instes.	Client:				0	11011
-40	10.00	2002//	30257	5.82 €	BCE				2796	-4-01.3
ethod: ui Pating			23170	3.10 N	BCE1	s Representative:			Scale	125
ant:			Grown	Level:	Date:				1000	
Tracked Ex	cavator		67.0	Omco	24/07/	2018			Logger	T ANN
Depth (m)	Sample / Seds	Field Records	Level (mOO)	Depth (m) (Thickness)	Legend		Description		1	
					1	TOPSOS, Eight greytift brown o	lightly savety CLAY	with pome hootlets.		
				(0.30)	M					
			46.70	0.30		Light graytin brown slightly san	sty slightly gravely	CUAY Send is finer	tu .	
a .	81				0.0	coarse. Gravel is angular fine to	marke of resenta	rue.		40
0	202			19.70)	7.51					
					HE					
			66.00	801	200	Stiff stark from alightly sandy	inghtly gravelly EL	Westly medium sol	strie	14
					Design	content. Send is fine to count. Imentane. Cobbins are angular	Gravet III angular f	Wests coarse of		
				10.700						
				10.769	20					
G id	82 04									u
			65.30	1.70	107	SOF dark grey signify socially CL	AV with heat him of	er contain Nager in	Sale Str	
			1000		E-E-	course. Builties are angular of	Irrestrone. Possible	weathered mek		
				(DAD)						100
			84.90	2.10	-	End	of trial get at 2 50m		-	
										10
										10-
										140
				8						
										.40
marks						-	Water	Strikes:	Stability:	
groundwire	er ercountered						Struck at Emil.	Remarks:	Station	
							ALL ST LINE	-4-4-6		4.44
									Width:	2.10
minuted un	postáble bemuck								Lyngth:	2.10

200			Project 18-082		Project	t Name: at Ballymakaily		No.:
6 go	CAUSE	WAY		inates:	Client		19	73
005	- GE	OTECH	30272		BCES		Sheet	1 of
Method:			-		Client	s Representative:		100
rial Ferring			1.000	1.75 N	RCE)		Scale	3.2
Sant: IT Trucked E	and the same of th			d Level: 5 mOD	Date:	north.	Logger	tuth
Dearth	Sample / Tests	Field Records		Depth (m) (Thickness)	24/07/		-	- 100
(m)	Dembis Listin	Field Records	(m00)	(Thickness)	Legend	Description TOPSOIL Firm light Snown samply CLAY with routlets.	ž	_
				(0.30)			Ш	
			86.25	0.80		Light: gregish brown slightly sandly very gravelly CLIO: Sand is fine to course.		
	II I		2000			Green is subangular to angular fine to course of titrestons.		
150	81 02						Ш	91
	(A.57)			(6.70)			Ш	
				0 0				
			65.55	1.00	200			1/22
130	153		\$3.33	110	100	Size grey slightly tandy very gravelly CLAY with low cottols content. Sind is fire to course. Gravel is angular fine to course of limetone. Cobbies and		
						boulders are angular of limestone.		
				(0.70)				
.50	94				45			44
.50 .50	05			1000			Ш	
			64.85	1.70	Pay	Grey angular COSSILTS and BOULDERS of trendstone with sandy gravetty clar point. Sand to fine to course. Grovel is angular fine to stamp of imposture.		
			14.65	1.80	576	Justic Sand is fine to coarse. Grovel is angular fine to coarse of investore. Placifies weathered nock. End of trial prior 1 50m	4	
				-		Ent in the prior 1 som		40
							Ш	
							Ш	
							Ш	
							Ш	
							Ш	
							Ш	
								36
							Ш	
							Ш	
							Ш	1.6
							11	
							Ш	
							П	92
							П	
								. 64
							П	
								_
emarks carroundead	er encountered						bility:	
						Struck at (m): Remarks: Sta	Like	
						w	dth:	0.80
entitleted on	possible bedrock					i.e	ngth:	9.00
manufacture (C)	APPROXIMATION AND PROPERTY.						- 7	_

CAUSEWAY		Probe Log	Probe No: DP18 Sheet 1 of 1				
roject Name: Lands at Ballymakally	Project No. 18-0827	Co-ords:	Hole Type: DP				
lent: BCEI		Levet	Scale: 1:50				
ient's Rep:		Date: 20/08/2018					
Depth (m) 16	Blows/1	00mm 30 40	Torque (Nm)				
marks:	Hammer Wt 6	Cone Base Diameter Final Depth PSH-B	51 1.70 AGS				

Causeway Geotech Ltd Dynamic Cone Penetrometer (DCP) test results and estimated CBR Lands at Ballymakaily Project:

TP02

Test Number:

CBR estimated using TRL Road Note 8: Log CBR = 2.48-1.057 Log (mm/blow) Project No: 18-0827

6.1

13

26

55

>100

Date: 25-Jul-18 depth cumulative number of blows CBR 20 25 30 10 15 to (%) 8.3

1000

Causeway Geotech Ltd CBR estimated using TRL Road Note 8: Dynamic Cone Penetrometer (DCP) test results and estimated CBR Log CBR = 2.48-1.057 Log (mm/blow) Lands at Ballymakaily Project No: 18-0827 Test Number: TP03 Date: 25-Jul-18 depth cumulative number of blows CBR 20 140 160 180 (%) 100 100 11 285 200 285 11 23 355 300 355 21 480 depth below ground level (mm) 480 12 590 590 >100 740 5.5 50 795 795 >100 800 800 \$00 2.3 >100 915 900

Causeway Geotech Ltd CBR estimated using TRL Road Note 8: Dynamic Cone Penetrometer (DCP) test results and estimated CBR Log CBR = 2.48-1.057 Log (mm/blow) Lands at Ballymakaily Project No: 18-0827 Test Number: TP11 Date: 25-Jul-18 depth cumulative number of blows CBR 140 160 180 (%) 100 100 11 235 200 28 9.4 310 300 310 29 430 depth below ground level (mm) 420 0.7 >100 430 430 85 530 530 >100 2.8 670 670 >100 690 690 700 >100 700 800

Causeway Geotech Ltd CBR estimated using TRL Road Note 8: Dynamic Cone Penetrometer (DCP) test results and estimated CBR Log CBR = 2.48-1.057 Log (mm/blow) Project: Lands at Ballymakaily Project No: 18-0827 Test Number: TP15 Date: 25-Jul-18 depth cumulative number of blows CBR 40 100 120 140 (%) 100 100 14 260 200 260 12 21 470 300 470 7.8 35 540 depth below ground level (mm) 400 540 47 5.8 800 500 800 >100 \$20 820 600 >100 0.2 825 700 800 900

Causeway Geotech Ltd

Dynamic Cone Penetrometer (DCP) test results and estimated CBR

CBR estimated using TRL Road Note 8: Log CBR = 2.48-1.057 Log (mm/blow)

Project No: 18-0827

Project: Lands at Ballymakaily TP19

800

+44 (0)28 2766 6640

SOIL AND ROCK SAMPLE ANALYSIS LABORATORY TEST REPORT

Project Name:	Lands at Ballymakaily	
Project No.:	18-0827	
Client:	BCEI	
Engineer:	BCEI	
Date:	15/08/18	

We are pleased to attach the results of laboratory testing carried out for the above project. This memo and ents constitute a report of the results of tests as detailed in the Contents page(s).

The attached results complete the testing requested and we would therefore wish to confirm that samples will be retained without charge for a period of 28 days from the above date after which they will be appropriately disposed of unless we receive written instructions to the contrary prior to that date.

We trust our report meets with your approval but if you have any queries or require additional information, please do not hesitate to contact the undersigned.

Approved Signatory

Signed for and on behalf of Causeway Geotech Ltd

+44 (0)28 2766 6640

Lands at Ballymakaily Report Reference: 18-0827 - Soils Schedule 1

The table below details the tests carried out, the specifications used, and the number of tests included in

Tests marked with 'in this report are not United Kingdom Accreditation Service (UKAS) accredited and are not included in Causeway Geotech Limited's scope of UKAS Accreditation Schedule of Tests. Opinions and interpretations expressed herein are outside the scope of UKAS accreditation.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL	Moisture Content of Soil	BS 1377-2: 1990: Cl 3.2	16
SOIL	Liquid and Plastic Limits of soil-1 point cone penetrometer method	BS 1377-2: 1990: Cl 4.4, 5.3 & 5.4	16
SOIL	Particle size distribution - wet sieving	BS 1377-2: 1990: CI 9.2	16
SOIL	Particle size distribution - sedimentation hydrometer method	BS 1377-2: 1990; Cl 9.5	16

SUB-CONTRACTED TESTS

In agreement with Client, the following tests were conducted by an approved sub-contractor. All sub-contracting laboratories used are UKAS accredited.

Material tested	Type of test/Properties measured/Range of measurement	Standard specifications	No. of results included in the report
SOIL - Subcontracted to Chemtest Ltd (UKAS 2183)	pH Value of Soil		16
SOIL - Subcontracted to Chemtest Ltd. (UKAS 2183)	Sulphate Content water extract		16

Causeway Geotech Ltd. 8 Drumahiskey Road, Ballymoney Co. Anthim. N. Ireland, 8753 7QL.

•	- SE	WAY			Summar	y of Clas	SITIC	atior	rest	Ke	sul	ts	
raject No.	0827		Project	Name		Lands	at Bal	lymakad	y				
	T	Sar	mple			Density	-	-	ш	PL.	PI	Particle	
Hale No.	Ref	Тор	Base	Type	Soil Description	bulk dry Mg/m ⁸		425µm				density Mg/m²	Casagrande Classification
TF16	,	0.50			Light Insuer, played; send; blightly greendly CLAY.		t2	78	42 -1pt	28	14		**
TP17		1,50			Clark gray skiptily sandy gravelly CLAY		7,0	47	24 - 1pt	34	10		۵
TP18	3	1.50			Dans Irrenn align®; sand; slign®; grandly CLAY.		10	GR.	24 - 1pt	16			E.
TP19		1.50			Con, skyth, sant, or, gravel, CLAY		7,3	4	23 - 1pt	15			۵
Deres)	-	in acco		Lauret	51377:1990 unless specifie	d otherwise		Printed		Аррг	oved	ву	(><)

C)	USE	WAY			Summar	y of Clas	sific	ation	Test	Re	sul	ts	
roject No.	0827		Project	Name		1		lymakati	20				
	0827	Sa	mple	_	Soil Description	Density bulk dry	*	Paring 12bm	ш	PL	PI	Particle density	Casagrande
Hale No.	Ref	Тор	Base	Type	Sail Description	Mgan ^a				*		Mg/m ⁴	Classification
TPG3	,	0.50		В	Light freum samfi, dighth, grandi; CLAY.		5.8	60	38 - tpt	26	12		M
TP04	1	0.50			Brownish gray slightly sandy slightly grandly CLAY.		12	69	36 - tpt	ж	12		**
7706		1.50			Dani Irpanian graj skatiki sandi granski CLAY		"	67	29 - fgs	19	10		G.
TPGT	,	0.50			Light graphs brown slightly sandy slightly grandly CLAY.		5.5	a	29 - 1pt	15	10		d
TP10	,	0.50			Down styric, sand, styric, grand, CLAY.		10	72	41 -1pt	21	20		6
TP10	4	1.50			Clark graylan brown allejfilly samby grandly CLAY.		:11:	60	41 -1pt	21	20		0
TP31	,	0.50			Yalkooleh irreum slightly sently slightly grandly CLAY.			us	38 - tps	25	13		uses
TP12	,	0.50			Light from skyldt; sand; skyrd; grandy CLAY		11	ee	28 - tpr	15	,		G.
TP13	ī	0.50		B	Light grayan house slights sandy grandly CLAY.		12	a	35 - tpi	19	16		0.0
TP14	1	0.50		5	Dan grey skiptly sandy skiptly grandly CLAY.		"	70	35-1pt	19	16		c.xo
TP15	,	0.50			Light Ironer slightly sendy slightly granely CLAY.		12	23	35 - 1pt	te	17		CLIO
TP15		1.50			Dan per signil, and, presili, CLAY		11	94	27 - hpt	17	10		cı.
4 tests per	omed	in acco	rdance v	with 85	S1377:1990 unless specifie	d otherwise							
								Printed	15	Арри	oved	Ву	# N

Final Report

Report No.: 18-23652-1 Initial Date of Issue: 10-Aug-2018

Causeway Geotech Ltd

Client Address:

8 Drumahiskey Road Balnamore Ballymoney

Contact(s):

Carin Cornwall
Colm Hurrey
Darren O'Mahony
Gabriella Horan
John Cameron
Lucy Newland
Matthew Gilbert
Neil Haggan
Paul Dunlop
Paul McNamara
Sean Ross
Stephen Franey
Stephen Franey
Stephen Watson
Stuart Abraham

18-0827 Lands at Ballymakelly

Date Received:

Order No.:

Results Due:

08-Aug-2018

No. of Samples: Turnaround (Wkdays): 3

10-Aug-2018

10-Aug-2018

Date Approved:

M.S.

Details:

Martin Dyer, Laboratory Manager

Page 1 of 4

Client: Causeway Geotech Ltd		Che	mtest J	ob No.:	18-23652	18-23652	18-23652	18-23652	18-23652	18-23652	18-23652	18-23652
Quotation No.:		Chemtest Sample ID.:		667901	667902	667903	667904	667905	667906	667907	667908	
Order No.:		Client Location ID.:		TP03	TP04	TP06	TP07	TP10	TP10	TP11	TP12	
	Client Sample Ref.:		2	2	5	2	2	5	2	2		
			Samp	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL	SOIL
	Top Depth (m): Date Sampled:			0.50	0.50	1,50	0.50	0.50	1.50 07-Aug-2018	0.50 07-Aug-2018	0.50	
				07-Aug-2018	07-Aug-2018	07-Aug-2018	07-Aug-2018	07-Aug-2018			07-Aug-2018	
Determinand	Accred.	SOP	Units	LOD		THE RESERVE						
Molsture	N	2030	%	0.020	7.8	11	9.2	4.4	7.8	9.6	7.7	8.3
pH	U	2010		N/A	8.4	8.6	8.5	8.5	8.5	8.6	8.3	8,4
Sulphate (2:1 Water Soluble) as SO4	U	2120	qΛ	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Results - Soil

Project, 16-0627 Lands at Ballymakelly												
Client: Causeway Geotech Ltd	HE LEVEL !	Che	mteet J	ob No.:	18-23652	18-23652	18-23652	18-23652	18-23652	18-23652	18-23652	18-23652
Quotation No.:	-	Chemte	et Sam	pie ID.:	667909	667910	667911	667912	667913	667914	667915	667916
Order No.:		Client Location ID.:		TP13	TP14	TP15	TP15	TP16	TP17	TP18	TP19	
		Clie	nt Samp	ile Ref.:	2	2	2	4	2	5	4	5
			Sampl	e Type:	SOIL							
		Top Depth (m):			0.50	0.50	0.50	1.50	0.50	1.50	1.50	1.50
			Date S	ampled:	07-Aug-2018							
Determinand	Accred.	SOP	Units	LOD								
Molsture	N	2030	%	0.020	5.7	6.7	8.0	11	10	8.5	10	5.9
pH	U	2010		N/A	8.5	8.5	8.4	8.7	8.2	8.8	8.5	8.7
Sulphate (2:1 Water Soluble) as SO4	U	2120	qΛ	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010

Page 3 of 4

Report Information

Comments or interpretations are beyond the scope of UKAS accreditation. The results relate only to the items tested. Uncertainty of measurement for the determinands tested are available upon request. None of the results in this report have been recovery corrected. All results are expressed on a dry weight basis. The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis. VOICS_PGBs_Phenois. Phenois. For all other tests the samples were dried at < 37°C prior to analysis. All Abstests testing is performed at the indicated billocariory. Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1.

- Sample Deviation Codes

 A Date of sampling not supplied

 B Sample age exceeds stability time (sampling to extraction)

 C Sample not received in appropriate containers

 D Broken Container

 E Insufficient Sample (Applies to LOI in Trommel Fines Only)

Sample Retention and Disposal

All soil samples will be retained for a period of 45 days from the date of receipt
All water samples will be retained for 14 days from the date of receipt
Charges may apply to extended sample storage

If you require extended retention of samples, please email your requirements to: customersenvices@chemtest.on.uk.

Page 4 of 4

The right chemitest Chemitest Ltd. Disport Road Newmarket

30-Jul-2018 30-Jul-2018

01-Aug-2018

Final Report

 Report No.:
 18-22446-1

 Initial Date of Issue:
 03-Aug-2018

 Client
 Causeway Geotech Ltd

8 Drumahiskey Road Balnamore Ballymoney County Antrim BT53 7QL

County Antrim
BT53 7QL

Contact(s): Aisling O'Kane

Darren O'Mahony Gabriella Horan John Cameron Lucy Newland Matthew Gilbert Neil Haggan Paul Dunlop Paul McNamara Stephen Franey Stephen Watson

Project 18-0827 Ballymakaily

Order No.:

No. of Samples: 14

Date Approved: 03-Aug-2018

Approved By:

Details: Robert Monk, Technical Manager

Page 1 of 6

Client: Causeway Geotech Ltd		Che	mteat J	ob No.:	18-22445	18-22446	18-22446	18-22446	18-22446	18-22446	18-22446	18-22446	18-22446
Quotation No.:		Chemte	est Sam	ple ID.:	661593	661595	661597	661599	661601	661602	661603	661604	661606
Order No.:		Cite	nt Loca	tion ID.:	TP03	TP06	TP10	TP11	TP01	TP02	TP04	TP09	TP12
		Cite	nt Samp	ile Ref.:	1	2	1	1	2	1	1	1	2
			Samp	e Type:	SOIL								
			Top De	pth (m):	1.00	1.50	0.50	0.50	1.50	0.30	0.50	0.50	1.50
			Date S	ampled:	23-Jul-2018	23-Jul-2018	23-Jul-2018	23-Jul-2018	25-Jul-2018	25-Jul-2018	25-Jul-2018	25-Jul-2018	25-Jul-2018
			Asbest	tos Lab:	COVENTRY								
Determinand	Accred.	SOP	Units	LOD									
ACM Type	C	2192		N/A						-			-
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected								
Moisture	N	2030	%	0.020	12	9.2	6.2	5.7	14	5.7	12	4,3	7.8
pH	U	2010		N/A	8.4	8.4	8.4	8.4	8.5	9.0	8.5	8,4	8.5
Boron (Hot Water Soluble)	U	2120	mq/kq	0.40	0.52	< 0.40	< 0.40	< 0.40	0.55	0.74	< 0.40	< 0.40	< 0.40
Sulphate (2:1 Water Soluble) as SO4	U	2120	g/f	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	0.095	< 0.010	< 0.010	< 0.010
Cyanide (Free)	U	2300	mg/kg		< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)	U	2300	mg/kg	0.50	0.80	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Thlocyanate	U	2300	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Sulphide (Easily Liberatable)	N	2325	mq/kq	0.50	15	35	6.3	12	12	6.2	8.1	22	16
Sulphate (Total)	U	2430	%	0.010	0.098	0.094	0.043	0.029	0.16	0.23	0.047	0.059	0.23
Arsenic	U	2450	mg/kg	1.0	28	29	33	26	31	31	21	25	31
Cadmium	U	2450	mg/kg	0.10	1.5	1.5	2.7	0.83	0.74	1.6	0.87	0.54	1.4
Chromium	U	2450	mg/kg	1.0	19	12	16	21	14	16	19	11	14
Copper	U	2450	mg/kg	0.50	25	22	32	17	30	38	16	28	26
Mercury	C	2450	mg/kg	0.10	0.11	< 0.10	< 0.10	< 0.10	< 0.10	0.11	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	49	48	53	37	55	41	37	59	47
Lead	U	2450	mg/kg	0.50	26	14	20	16	38	42	18	8.0	16
Selenium	C	2450	mg/kg	0.20	< 0.20	< 0.20	< 0.20	< 0.20	0.31	0.43	< 0.20	< 0.20	0.56
Zinc	U	2450	mg/kg	0.50	80	58	74	56	73	110	60	37	72
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	1.5	0.52	3.8	0.84	1.9	5.2	0.88	0.97	1.0
Allphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	ma/ka	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Allphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Alliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Allphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mq/kq	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Allphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0°	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	marka	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Page 2 of 6

Chemtest The light phermistry to deliver results

Results - Soil

Client: Causeway Geotech Ltd		Che	mtest J	ob No.:	18-22446	18-22446	18-22446	18-22446	18-22446	18-22446	18-22446	18-22446	18-22446
Quotation No.:		Chemte	et Sam	ple ID.:	661593	661595	661597	661599	661601	661602	661603	661604	661606
Order No.:			ent Locat		TP03	TP06	TP10	TP11	TP01	TP02	TP04	TP09	TP12
		Cile	nt Samp	le Ref.:	- 1	2	1	1	2	- 1	1	1	2
			Sampl	e Type:	SOIL								
			Top De	oth (m):	1.00	1.50	0.50	0.50	1.50	0.30	0.50	0.50	1.50
			Date Sa	impled:	23-Jul-2018	23-Jul-2018	23-Jul-2018	23-Jul-2018	25-Jul-2018	25-Jul-2018	25-Jul-2018	25-Jul-2018	25-Jul-2018
			Asbest	os Lab:	COVENTRY								
Determinand	Accred.	SOP	Units	LOD						R F			
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10	< 10
Naphthalene	υ	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Pyrene	U	2700	mq/kq	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)anthracene	Ü	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2700	maka	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(b)fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(k)fluoranthene	U	2700	mq/kq	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	U	2700	marka	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Dibenz(a,h)Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(g,h,f)perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	U	2700	mg/kg	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Benzene	Ü	2760	руджа	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	ража	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	U	2760	µq/kq	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	иа/ко	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	U	2760	µд/кд	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Resorcinal	U	2920	mg/kg	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Phenol	U	2920	mg/kg	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Cresols	U	2920	mg/kg	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Xylenois	U	2920	mg/kg	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
1-Naphthol	N	2920	mg/kg		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Trimetnylphenois	U	2920	mg/kg	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Total Phenois	U	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30

Page 3 of 6

Client: Causeway Geotech Ltd			mtest J		18-22446	18-22446	18-22446	18-22446	18-22446	
Quotation No.:		Chemte	et Sam	ple ID.:	661608	661609	661611	661614	661616	
Order No.:		Clle	ent Local	tion ID.:	TP13	TP15	TP16	TP17	TP19	
		Cite	nt Samp	ile Ref.:	2	1	1	2	2	
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	3.01L 1.50 25-Jul-2018 COVENTRY	
			Top De	pth (m):	1.50	0.50	0.50	1.50		
			Date Sa	ampled:	25-Jul-2018	25-Jul-2018	25-Jul-2018	25-Jul-2018		
			Asbest	os Lab:	COVENTRY	COVENTRY	COVENTRY	COVENTRY		
Determinand	Accred.	SOP	Units	LOD						
ACM Type	U	2192		N/A		•				
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected					
Molsture	N	2030	%	0.020	11	9.7	9,4	8.4	6.5	
pH	U	2010		N/A	8.5	8.2	8.3	8.5	8.5	
Boron (Hot Water Soluble)	U	2120	mq/kq	0.40	< 0.40	0.54	0.49	< 0.40	< 0.40	
Sulphate (2:1 Water Soluble) as SO4	U	2120	QΛ	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	
Cyanide (Free)	U	2300	mq/kq	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	0.60	< 0.50	< 0.50	
Thiocyanate	U	2300	mq/kq	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
Sulphide (Easily Liberatable)	N	2325	mq/kg	0.50	12	6.3	8.0	8.9	11	
Sulphate (Total)	U	2430	%	0.010	0.063	0.083	0.071	0.14	0.051	
Arsenic	U	2450	mq/kq	1.0	28	26	26	40	24	
Cadmium	U	2450	mq/kq	0.10	1.7	1.4	1.2	2.0	1.6	
Chromium	U	2450	ma/ka	1.0	14	24	19	12	15	
Copper	U	2450	mq/kg	0.50	34	24	15	20	22	
Mercury	U	2450	ma/ka	0.10	< 0.10	0.11	< 0.10	< 0.10	< 0.10	
Nickel	U	2450	mg/kg	0.50	49	44	36	36	38	
Lead	U	2450	mg/kg	0.50	20	27	22	20	13	
Selenium	U	2450	mg/kg	0.20	0.73	0.48	< 0.20	0.76	< 0.20	
Zinc	U	2450	mg/kg	0.50	87	83	61	130	63	
Chromlum (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	
Organic Matter	U	2625	%	0.40	0.79	2.1	1.7	0.93	0.66	
Aliphatic TPH »CS-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C8-C10	U	2680	ma/ka	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C21-C35	U	2680	mq/kq	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Aromatic TPH >C8-C10	U	2680	ma/ka	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	

Page 4 of 6

Results - Soil

Client: Causeway Geotech Ltd			mtest J		18-22446	18-22446	18-22446	18-22446	18-22446	
Quotation No.:		Chemte	et Sam	ple ID.:	661608	661609	661611	661614	661616	
Order No.:		Clle	nt Local	tion ID.:	TP13	TP15	TP16	TP17	TP19 2	
		Clle	nt Samp	ile Ref.:	2	1	1	2		
			Sampl	e Type:	SOIL	SOIL	SOIL	SOIL	SOIL	
			Top De	pth (m):	1.50	0.50	0.50	1.50	1.50	
			Date Sa	ampled:	25-Jul-2018	25-Jul-2018	25-Jul-2018	25-Jul-2018	25-Jul-2018	
			Asbest	os Lab:	COVENTRY	COVENTRY		COVENTRY	COVENTRY	
Determinand	Accred.	SOP	Units	LOD						
Aromatic TPH >C21-C35	U	2680	mq/kq	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	
Total Petroleum Hydrocarbons	N	2680	mq/kq	10.0	< 10	< 10	< 10	< 10	< 10	
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
Acenaphthylene	U	2700	mq/kq	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
Acenaphthene	U	2700	ma/ka	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
Anthraoene	U	2700	mq/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
Fluoranthene	U	2700	mq/kq	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
Pyrene	U	2700	maka		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo[a]anthracene	Ü	2700	mq/ko	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
Chrysene	U	2700	marka	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo(b)Nuoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
Benzolk/fluoranthene	U	2700	mq/kq	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
Benzo[a]pyrene	U	2700	mq/kq		< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
Indeno(1,2,3-c,d)Pyrene	U	2700	ma/ka	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
Dibenz(a,h)Anthracene	U	2700	maka	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
Benzolg,h,liperviene	U	2700	mq/kq	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	
Total Of 16 PAH's	U	2700	ma/ka	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	
Benzene	U	2760	ража	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Toluene	U	2760	µa/ka	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Ethylbenzene	U	2760	иажа	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
m & p-Xylene	U	2760			< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
o-Xylene	U	2760	µg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	
Resordinol	U	2920	mg/kg	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Phenol	U	2920	mg/kg		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Cresols	U	2920	ma/kg	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Xylenois	U	2920	ma/ka	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
1-Naphthol	N	2920	mg/kg	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Trimethylphenois	U	2920	mg/kg		< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	
Total Phenois	U	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	

Page 5 of 6

- Key

 U UKAS accredited

 MCERT'S and UKAS accredited

 N Uncorredited

 N Uncorredited

 S This analysis has been subcontracted to a UKAS accredited laboratory that is accredited for this analysis

 This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis

 T This analysis has been subcontracted to an unaccredited laboratory

 I/S Insufficient Sample

 N/S Insufficient Sample

 N/E not evaluated

 C **Ress than

 Preseter than

- Comments or interpretations are beyond the scope of UKAS accreditation. The results relate only to the items tested. Uncertainty of measurement for the determinants tested are available upon request. None of the results in this report have been recovery corrected. All results are expressed on a five weight basis. The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis. VOICs, PGBs, Phenois. For all other tests the samples were dried at 4.37°C prior to analysis. All Abstestos testing is performed at the indicated laboratory. Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1.

- Sample Deviation Codes

 A Date of sampling not supplied
 B Sample age exceeds stability time (sampling to extraction)
 C Sample not received in appropriate containers
 D Broken Container
 E Insufficient Sample (Applies to LOI in Trommel Fines Only)

- Sample Retention and Disposal

 All soil samples will be retained for a period of 45 days from the date of receipt
 All water samples will be retained for 14 days from the date of receipt
 Charges may apply to extended sample storage

Final Report

Report No.:	18-24061-1
Initial Date of Issue:	16-Aug-2018
Client	Causeway Geotech Ltd
Client Address:	8 Drumahiskey Road Balnamore

Ballymoney County Antrim BT53 7QL

Carin Cornwall Contact(s):

Carin Cornwall
Colm Hurley
Darren O'Mahony
Gabriella Horan
John Cameron
Lucy Newland
Matthew Gilbert
Neil Haggan
Paul Dunlop
Paul McNamara
Sean Ross
Stephen Franey
Stephen Watson
Stuart Abraham

18-0827 Lands at Ballymakelly

10-Aug-2018 Order No.: Date Instructed: 13-Aug-2018

No. of Samples: 10 Turnaround (Wkdays): 3

15-Aug-2018 Results Due:

Date Approved: 16-Aug-2018 Approved By:

Robert Monk, Technical Manager

Chemtest Project: The north chemetry to deliver results Project: The 0-027 Lands at Ballymakelly

Results - Soil

Client: Causeway Geotech Ltd		-	mtest J	-	18-24061	18-24061	18-24061	18-24061	18-24061	18-24061	18-24061	18-24061
Quotation No.:		Chemte	est Sam	ple ID.:	669833	669834	669835	669836	669837	669838	669839	669840
Order No.:		Clle	ent Loca	tion ID.:	BH08	BH08	BH11	BH11	BH13	BH13	BH14	BH14
		Citie	nt Samp		ES1	ES2	ES2	ES1	ES1	ES2	ES1	ES2
			Sampl	le Type:	SOIL							
			Top De	pth (m):	0.5	1.5	1.50	0.50	0.5	1.5	0.5	1.5
			Date S	ampled:	09-Aug-2018							
			Asbest	tos Lab:	COVENTRY							
Determinand	Accred.	SOP	Units	LOD								
ACM Type	U	2192		N/A								(*)
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected							
Moisture	N	2030	- %	0.020	7.6	8.8	13	12	6.9	7.8	14	10
pH	U	2010		N/A	8.6	8.6	8.4	8.4	8.6	8.6	8.2	8.5
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	< 0.40	< 0.40	0.61	< 0.40	< 0.40	< 0.40	0.70	< 0.40
Sulphate (2:1 Water Soluble) as SO4	U	2120	qΛ	0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010	< 0.010
Cyanide (Free)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Cyanide (Total)	U	2300	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Thiocyanate	U	2300	mg/kg	5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Sulphide (Easily Liberatable)	N	2325	mg/kg	0.50	7.9	24	17	5.1	4.3	21	1.6	6.2
Sulphate (Total)	U	2430	%	0.010	0.077	0.10	0.17	0,031	0.041	0.83	0.072	0.084
Arsenic	U	2450	mq/kg	1.0	17	22	20	19	22	28	23	26
Cadmium	U	2450	mg/kg	0.10	0.76	1.6	1.3	0.81	2.0	1.4	2.6	2.6
Chromlum	U	2450	mg/kg	1.0	18	12	18	24	14	12	25	17
Copper	U	2450	mq/kq	0.50	11	25	25	13	24	20	23	38
Mercury	U	2450	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	30	45	41	48	51	48	50	60
Lead	U	2450	mg/kg	0.50	14	11	31	18	15	11	24	20
Selentum	U	2450	mg/kg	0.20	< 0.20	0.83	2.0	0.30	< 0.20	0.60	0.84	2.6
Zino	U	2450	mq/kq	0.50	49	53	69	73	54	50	96	90
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	1.1	1.2	2.9	0.72	0.76	1.5	1.9	1.6
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH »C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	16	65	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	16	65	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0

Page 2 of 6

Client: Causeway Geotech Ltd		Che	mtest J	ob No.:	18-24061	18-24061	18-24061	18-24061	18-24061	18-24061	18-24061	18-24061
Quotation No.:		Chemte	et Sam	ple ID.:	669833	669834	669835	669836	669837	669838	669839	669840
Order No.:		Clie	nt Local	ion ID.:	BH08	BH08	BH11	BH11	BH13	BH13	BH14	BH14
		Cile	nt Samp	le Ref.:	ES1	ES2	ES2	ES1	ES1	ES2	ES1	ES2
			Sampl	e Type:	SOIL							
			Top De	pth (m):	0.5	1.5	1,50	0.50	0.5	1,5	0.5	1.5
			Date Sa	ampled:	09-Aug-2018							
			Asbest	os Lab:	COVENTRY							
Determinand	Accred.	SOP	Unita	LOD								
Aromatic TPH >C21-C35	U	2680	ma/ka	1.0	< 1.0	25	97	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Aromatic TPH >C35-C44	N	2680	mg/kg	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	25	97	< 5.0	< 5.0	< 5.0	< 5.0	< 5.0
Total Petroleum Hydrocarbons	N	2680	mg/kg	10.0	< 10	41	160	< 10	< 10	< 10	< 10	< 10
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Acenaphthene	u	2700	ma/ka	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluorene	Ü	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Phenanthrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Fluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.32	< 0.10
Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	0.66	< 0.10
Benzo(a)anthracene	ŭ	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Chrysene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo/bifluoranthene	Ü	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzoikifluoranthene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(a)pyrene	Ü	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
D(benz(a,h)Anthracene	U	2700	mq/kq	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Benzo(q,h,f)perylene	U	2700	mg/kg	0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
Total Of 16 PAH's	u	2700	ma/ka	2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0	< 2.0
Benzene	Ü	2760	ража	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Toluene	U	2760	иажа	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Ethylbenzene	u	2760	ража	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
m & p-Xylene	U	2760	ид/ка	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
o-Xylene	ŭ	2760	рама	1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0	< 1.0
Resordinal	U	2920	ma/ka	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Phenol	U	2920	mg/kg	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Cresois	U	2920	mg/kg	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Xylenois	U	2920	mg/kg	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
1-Naphthol	N	2920	mg/kg	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Trimethylphenois	ü	2920	mg/kg	0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050	< 0.050
Total Phenois	11	2920	mg/kg	0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30	< 0.30

Page 3 of 6

Chemtest The right chemistry to deliver results

Results - Soil

Client: Causeway Geotech Ltd		Che	mtest J	ob No.:	18-24061	18-24061
Quotation No.:		Chemte	et Sam	ple ID.:	669841	669842
Order No.:		Cile	nt Local	tion ID.:	BH15	BH15
		Clie	nt Samp	ile Ref.:	ES1	ES2
			Sampl	e Type:	SOIL	SOIL
			Top De	pth (m):	0.5	1.5
			Date Sa	amplied:	09-Aug-2018	09-Aug-2018
			Asbest	os Lab:	COVENTRY	COVENTRY
Determinand	Accred.	SOP	Units	LOD		
ACM Type	U	2192		N/A		
Asbestos Identification	U	2192	%	0.001	No Asbestos Detected	No Asbestos Detected
Moisture	N	2030	%	0.020	9.8	7.2
pH	U	2010		N/A	8.4	8.5
Boron (Hot Water Soluble)	U	2120	mg/kg	0.40	< 0.40	< 0.40
Sulphate (2:1 Water Soluble) as SO4	U	2120	QΛ	0.010	< 0.010	< 0.010
Cvanide (Free)	U	2300	mg/kg		< 0.50	< 0.50
Cyanide (Total)	U	2300	ma/ka		< 0.50	< 0.50
Thiocyanate	U	2300	mg/kg	5.0	< 5.0	< 5.0
Sulphide (Easily Liberatable)	N	2325	mq/kq	0.50	2.1	10
Sulphate (Total)	U	2430	%	0.010	0.024	0.12
Arsenic	U	2450	mq/kq	1.0	44	35
Cadmlum	U	2450	mq/kq	0.10	1.2	2.3
Chromium	U	2450	mg/kg	1.0	20	15
Copper	U	2450	mq/kg	0.50	23	32
Mercury	U	2450	ma/ka	0.10	< 0.10	< 0.10
Nickel	U	2450	mg/kg	0.50	54	56
Lead	U	2450	mg/kg		16	18
Selenium	U	2450	mg/kg	0.20	0.73	2.2
Zinc	U	2450	mg/kg	0.50	58	78
Chromium (Hexavalent)	N	2490	mg/kg	0.50	< 0.50	< 0.50
Organic Matter	U	2625	%	0.40	0.86	1.6
Aliphatic TPH >C5-C6	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C6-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C8-C10	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C12-C16	U	2680	mg/kg	1.0	< 1.0	< 1.0
Allphatic TPH >C16-C21	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aliphatic TPH >C35-C44	N	2680	mq/kq	1.0	< 1.0	< 1.0
Total Aliphatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0
Aromatic TPH >C5-C7	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C7-C8	N	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C8-C10	U	2680	mg/kg		< 1.0	< 1.0
Aromatic TPH >C10-C12	U	2680	mg/kg	1.0	< 1.0	< 1.0
Aromatic TPH >C12-C16	U	2680	mg/kg		< 1.0	< 1.0
Aromatic TPH >C16-C21	U	2680	ma/ka	1.0	< 1.0	< 1.0

Page 4 of 6

Client: Causeway Geotech Ltd			mtest J		18-24061	18-24061	
Quotation No.:				ple ID.:	669841	669842	
Order No.:			nt Local		BH15	BH15	
		Cite	nt Samp		ES1	ES2	
			Sampl	e Type:	SOIL	SOIL	
			Top De		0.5	1.5	
			Date Sa	ampled:	09-Aug-2018	09-Aug-2018	
					COVENTRY	COVENTRY	
Determinand	Accred.	SOP	Unite	LOD			
Aromatic TPH >C21-C35	U	2680	mg/kg	1.0	< 1.0	< 1.0	
Aromatic TPH >C35-C44	N	2680	mq/kq	1.0	< 1.0	< 1.0	
Total Aromatic Hydrocarbons	N	2680	mg/kg	5.0	< 5.0	< 5.0	
Total Petroleum Hydrocarbons	N.	2680	mg/kg	10.0	< 10	< 10	
Naphthalene	U	2700	mg/kg	0.10	< 0.10	< 0.10	
Acenaphthylene	U	2700	marka	0.10	< 0.10	< 0.10	
Acenaphtnene	U	2700	mg/kg	0.10	< 0.10	< 0.10	
Fluorene	U	2700	mg/kg	0.10	< 0.10	< 0.10	
Phenanthrene	U	2700	maka	0.10	< 0.10	< 0.10	
Anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	
Fluoranthene	U	2700	mq/kg	0.10	< 0.10	< 0.10	
Pyrene	U	2700	ma/ka	0.10	< 0.10	< 0.10	
Benzo(a)anthracene	U	2700	mg/kg	0.10	< 0.10	< 0.10	
Chrysene	U	2700	mg/kg	0.10	< 0.10	< 0.10	
Benzofbifluoranthene	U	2700	mafka	0.10	< 0.10	< 0.10	
Benzo(k)fluoranthene	U	2700	ma/kg	0.10	< 0.10	< 0.10	
Benzo[a]pyrene	Ü		mq/kq		< 0.10	< 0.10	
Indeno(1,2,3-c,d)Pyrene	U	2700	mg/kg	0.10	< 0.10	< 0.10	
Dibenz(a,h)Anthracene	U	2700	mq/ka	0.10	< 0.10	< 0.10	
Benzolg,h,flperytene	U	2700	ma/ka	0.10	< 0.10	< 0.10	
Total Of 16 PAH's	U	2700	ma/ka	2.0	< 2.0	< 2.0	
Benzene	U	2760	иджо	1.0	< 1.0	< 1.0	
Toluene	U		иджа		< 1.0	< 1.0	
Ethylbenzene	U		ража		< 1.0	< 1.0	
m & p-Xylene	U		ража		< 1.0	< 1.0	
o-Xylene	U		µд∕ка		< 1.0	< 1.0	
Resordinal	U		marka		< 0.050	< 0.050	
Phenol	U		maka		< 0.050	< 0.050	
Cresols	U		mg/kg		< 0.050	< 0.050	
Xvienois	U		mg/kg		< 0.050	< 0.050	
1-Naphthol	N		ma/ka		< 0.050	< 0.050	
Trimethylphenois	Ü		mg/kg		< 0.050	< 0.050	
Total Phenois	Ü		mg/kg		< 0.30	< 0.30	

Report Information

- UKAS accredited MCERTS and UKAS accredited

- M MCERT'S and UKAS accredited
 N Unaccredited
 This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
 This analysis has been subcontracted to a UKAS accredited laboratory that is not accredited for this analysis
 This analysis has been subcontracted to an unaccredited laboratory
 This analysis has been subcontracted to an unaccredited laboratory
 US Susthicted Sample
 US Unsubtable Sample
 NE not evaluated
 **Res that"
 greater than

Comments or interpretations are beyond the scope of UNAS accreditation. The results relate only to the items tested. Uncertainty of measurement for the determinands tested are available upon request. None of the results in this report have been recovery corrected. All results are expressed on a of yweight basis. The following tests were analysed on samples as received and the results subsequently corrected to a dry weight basis in Very Core (PCBs). Phenois For all other tests the samples were dried at <37°C prior to analysis. All Abbestos testing is performed at the indicated beforetory. Issue numbers are sequential starting with 1 all subsequent reports are incremented by 1.

Sample Deviation Codes

- per Deviation Codes

 A Date of sampling not supplied

 B Sample age exceeds stability time (sampling to extraction)

 C Sample not received in appropriate containers

 D Broken Container

 E Insufficient Sample (Applies to LOI in Trommel Fines Only)

- Sample Retention and Disposal

 All soil samples will be retained for a period of 45 days from the date of receipt
 All water samples will be retained for 14 days from the date of receipt
 Charges may apply to extended sample storage

Page 6 of 6

SPT Hammer Energy Test Report

SPT Hammer Ref:	T10267
Test Date:	14/04/2018
Report Date:	15/04/2018
File Name:	T10267.spt
Test Operator:	CAUSEWAY
	Report Date:

SPT Hammer Information Instrumented Rod Data Diameter d_r (mm): 54
Wall Thickness t_r (mm): 6.0 Hammer Mass m (kg): 63.5 Falling Height h (mm): 760 Assumed Modulus E_a (GPa): 200 SPT String Length L (m): 10.5 Accelerometer No.1: Accelerometer No.2: 6458 Comments / Location Causeway Yard

The recommended calibration interval is 12 months

SPTMAN ver. 1.52 All rights reserved, Testizmeut (\$2010)

Appendix 7.3 Soil chemical test analysis results

Element Materials Technology

P: +44 (0) 1244 833780

Unit 3 Deeside Point

F: +44 (0) 1244 833781

Zone 3

1. 11(0) 1211 00010

Deeside Industrial Park

Deeside CH5 2UA W: www.element.com

AWN Consulting Tecpro Building Clonshaugh Business & Technology Park Dublin Dublin 17 Ireland

Attention :

Colm Driver

Date :

4th December, 2020

Your reference :

Our reference :

Test Report 20/16584 Batch 1

Location :

Edgeconnex, Grangecastle

Date samples received :

26th November, 2020

Status:

Final report

Issue:

1

Four samples were received for analysis on 26th November, 2020 of which four were scheduled for analysis. Please find attached our Test Report which should be read with notes at the end of the report and should include all sections if reproduced. Interpretations and opinions are outside the scope of any accreditation, and all results relate only to samples supplied.

All analysis is carried out on as received samples and reported on a dry weight basis unless stated otherwise. Results are not surrogate corrected.

Authorised By:

Phil Sommerton BSc Senior Project Manager

Please include all sections of this report if it is reproduced

Element Materials Technology Environmental UK Limited Registered in England and Wales Registered Office: 10 Lower Grosvenor Place, London, SW1W 0EN Company Registration No: 11371415

Client Name: Reference:

AWN Consulting

Report: Liquid

Location:

Edgeconnex, Grangecastle

Contact: Colm Driver Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

EMT Job No:	20/16584					H=H ₂ SO ₄ , Z	Z=ZnAc, N=NaOH,	HN=HN0 ₃			
EMT Sample No.	1-6	7-12	13-18	19-24							
Sample ID	BH05	BH10	Вн11	BH15							
Depth									Diagon	e attached r	atos for all
COC No / misc										ations and a	
NORTH CONTROL OF CONTR	VUUNDO	VULINDO	VHUNDG	V H HN P G							
CARCONING.											
Sample Date											
Sample Type	Ground Water	Ground Water	Ground Water	Ground Water							
Batch Number	1	1	1	1					LOD/LOR	Units	Method
Date of Receipt	26/11/2020	26/11/2020	26/11/2020	26/11/2020					Annae Ingeles		No.
Dissolved Arsenic*	<2.5	<2.5	<2.5	<2.5					<2.5	ug/l	TM30/PM14
Dissolved Boron	13	<12	13	14			- 1		<12	ug/l	TM30/PM14
Dissolved Cadmium	<0.5	<0.5	<0.5	<0.5			1		<0.5	ug/l	TM30/PM14
Total Dissolved Chromium	<1.5 <7	<1.5 <7	<1.5 <7	<1.5 <7					<1.5 <7	ug/l ug/l	TM30/PM14 TM30/PM14
Dissolved Copper* Dissolved Lead*	<5	<5	<5	<5					<5	ug/l	TM30/PM14
Dissolved Mercury	<1	<1	<1	<1					<1	ug/l	TM30/PM14
Dissolved Nickel*	4	<2	3	4					<2	ug/l	TM30/PM14
Dissolved Selenium*	<3	<3	<3	<3			T.		<3	ug/l	TM30/PM14
Dissolved Zinc*	<3	<3	<3	7					<3	ug/l	TM30/PM14
PAH MS								-			
Naphthalene*	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM4/PM30
Acenaphthylene*	<0.013	<0.013	<0.013	<0.013					<0.013	ug/l	TM4/PM30
Acenaphthene*	<0.013	<0.013	<0.013	<0.013	- 1				<0.013	ug/l	TM4/PM30
Fluorene *	<0.014	<0.014	<0.014	<0.014					<0.014	ug/l	TM4/PM30 TM4/PM30
Phenanthrene * Anthracene *	<0.011	<0.011	<0.011	<0.011					<0.011	ug/l ug/l	TM4/PM30
Fluoranthene *	<0.013	<0.013	<0.013	<0.013					<0.013	ug/l	TM4/PM30
Pyrene*	< 0.013	< 0.013	< 0.013	< 0.013					< 0.013	ug/l	TM4/PM30
Benzo(a)anthracene *	< 0.015	<0.015	<0.015	< 0.015					< 0.015	ug/l	TM4/PM30
Chrysene *	< 0.011	< 0.011	<0.011	< 0.011				1 1	< 0.011	ug/l	TM4/PM30
Benzo(bk)fluoranthene*	<0.018	<0.018	<0.018	<0.018		1 1	1		<0.018	ug/l	TM4/PM30
Benzo(a)pyrene *	<0.016	<0.016	<0.016	<0.016			- 1		<0.016	ug/l	TM4/PM30
Indeno(123cd)pyrene *	< 0.011	<0.011	<0.011	<0.011				1 1	< 0.011	ug/l	TM4/PM30
Dibenzo(ah)anthracene*	<0.01	<0.01	<0.01	<0.01		1 1	1		<0.01	ug/l	TM4/PM30
Benzo(ghi)perylene	<0.011	<0.011	<0.011	<0.011			1		<0.011	ugfl	TM4/PM30
PAH 16 Total*	<0.195	<0.195 <0.01	<0.195 <0.01	<0.195 <0.01					<0.195 <0.01	ug/l	TM4/PM30 TM4/PM30
Benzo(b)fluoranthene Benzo(k)fluoranthene	<0.01	<0.01	<0.01	<0.01					<0.01	ug/l ug/l	TM4/PM30
PAH Surrogate % Recovery	86	85	88	77					<0	%	TM4/PM30
Methyl Tertiary Butyl Ether	<0.1	<0.1	<0.1	<0.1					<0.1	ug/l	TM15/PM10
Benzene *	<0.5	<0.5	<0.5	<0.5					<0.5	ug/l	TM15/PM10
Toluene *	<5	<5	<5	<5					<5	ug/l	TM15/PM10
Ethylbenzene *	<1	<1	<1	<1	1				<1	ug/l	TM15/PM10
m/p-Xylene*	<2	<2	<2	<2					<2	ug/l	TM15/PM10
o-Xylene *	<1	<1	<1	<1					<1	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	97	96	96	96					<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	94	96	95	95					<0	%	TM15/PM10

QF-PM 3.1.2 v11

Please include all sections of this report if it is reproduced All solid results are expressed on a dry weight basis unless stated otherwise.

Client Name:

AWN Consulting

Report: Liquid

Reference:

Location:

Edgeconnex, Grangecastle

Colm Driver Contact:

Liquids/products: V=40ml vial, G=glass bottle, P=plastic bottle

EMT Sample No.	BH11 PGVHHNPG 020 28/11/2020 10:36 atter Ground Water	28/11/2020 11:00 Ground Water 1 26/11/2020 <10 <10 <10 <5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10							e attached ri attions and a Units	Method No.
Depth COC No / misc Containers V H HN P G V H HN Sample Date Sample Type Batch Number 1 1 1 Date of Receipt 26/11/2020 26/11/ TPH CWG Aliphatics >C5-C6 * <10 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	P G V H HN P G 10:20 25/11/2020 10:30 26/11/2020 26/11/2020 <10 <10 <10 <10 <10 <10 <10 <10 <10 <1	V H HN P G 28/11/2020 11:00 Ground Water 1 26/11/2020 <10 <10 <5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10						LOD/LOR	Units Ug/l	Method No.
COC No / misc Containers Sample Date Sample Type Batch Number Date of Receipt Aliphatics >C5-C6* <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	0:00 38/11/0020 18:36 Ground Water 1 26/11/2020 <10 <10 <10 <10 <10 <10 <10	28/11/2020 11:00 Ground Water 1 26/11/2020 <10 <10 <10 <5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10						LOD/LOR	Units Ug/l	Method No.
Containers V H HN P G V H HN P G Sample Date Sample Type Ground Water Ground Water Date of Receipt 26/11/2020 26/11/. TPH CWG Aliphatics SC5-C6 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	0:00 38/11/0020 18:36 Ground Water 1 26/11/2020 <10 <10 <10 <10 <10 <10 <10	28/11/2020 11:00 Ground Water 1 26/11/2020 <10 <10 <10 <5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10						LOD/LOR	Units Ug/l	Method No.
Containers V H HN P G V H HN P G Sample Date Sample Type Ground Water Ground Water Date of Receipt 26/11/2020 26/11	0:00 38/11/0020 18:36 Ground Water 1 26/11/2020 <10 <10 <10 <10 <10 <10 <10	28/11/2020 11:00 Ground Water 1 26/11/2020 <10 <10 <10 <5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10						<10	ug/l	No. TM36/PM12
Sample Date Sample Type Ground Water Ground Water Date of Receipt 26/11/2020 26/11/ TPH CWG Aliphatics	0:00 38/11/0020 18:36 Ground Water 1 26/11/2020 <10 <10 <10 <10 <10 <10 <10	28/11/2020 11:00 Ground Water 1 26/11/2020 <10 <10 <10 <5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10						<10	ug/l	No. TM36/PM12
Sample Type Ground Water Ground Water Ground Water 1	April	Cround Water 1 26/11/2020 <10 <10 <10 <5 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10						<10	ug/l	No. TM36/PM12
Batch Number 1 1 1 Date of Receipt 26/11/2020 26/11/ TPH CWG Aliphatics >C5-C6*	1 020 26/11/2020 <10 <10 <10 <5 <10 <10 <10	1 26/11/2020 <10 <10 <10 <5 <10 <10 <10						<10	ug/l	No. TM36/PM12
Date of Receipt 26/11/2020 26/11// TPH CWG Aliphatics >C5-C6-4	200 26/11/2020 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <10 <5 <10 <10 <10						<10	ug/l	No. TM36/PM12
TPH CWG Aliphatics >C5-C6* <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <1 <10 <10 <1 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	<10 <10 <10 <5 <10 <10	<10 <10 <10 <5 <10 <10 <10						<10	ug/l	No. TM36/PM12
Aliphatics >C5-C64	<10 <10 <5 <10 <10 <10	<10 <10 <5 <10 <10 <10						7.55		
>C5-C6" <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<10 <10 <5 <10 <10 <10	<10 <10 <5 <10 <10 <10						7.55		
>C6-C8*	<10 <10 <5 <10 <10 <10	<10 <10 <5 <10 <10 <10		- 0-				7.55		
>C8-C10" <10 <1 >C10-C12" <5 <5 >C12-C16" <10 <1 >C16-C21" <10 <1 >C16-C21" <10 <1 Total aliphatics C5-35" <10 <1 Aromatics >C5-EC7" <10 <1 <11 <1 >C1 <1 <11 <1 >C1 <1 <11 <1 <11 <1 <11 <1 <11 <1 <11 <1 <11 <1 <11 <1	<10 <5 <10 <10 <10	<10 <5 <10 <10 <10)-				<10		
>C10-C12*	<5 <10 <10 <10	<5 <10 <10 <10						(35	ug/l	TM36/PM12
>C12-C16" <10 <1 >C16-C21" <10 <1 >C21-C35" <10 <1 Total aliphatics C5-35" <10 <1 Aromatics >C5-EC7" <10 <1 >EC7-EC8" <10 <1	<10 <10 <10	<10 <10 <10			4			<10	ug/l	TM36/PM12
>C16-C21	<10 <10	<10 <10		1				<5	ug/l	ТМБ/РМ16/РМ30
>C21-C35	<10	<10						<10	ug/l	тивритыризо
Total aliphatics C5-35								<10	ug/l	TMSPM16IPM30
Aromatics >C5-EC7* <10 <1 >EC7-EC8* <10 <1	<10							<10	ug/l	TM5/PM16/PM30
>EC7-EC8* <10 <1		<10						<10	ug/l	THERTHOUGH UP OF THE PARTY OF
	<10	<10						<10	ug/l	TM36/PM12
F00 F0404	<10	<10						<10	ug/l	TM36/PM12
>EC8-EC10* <10 <1	<10	<10						<10	ug/l	TM36/PM12
>EC10-EC12* <5 <5	<5	<5						<5	ug/l	TMS/PM16/PM30
>EC12-EC16 <10 <10	<10	<10						<10	ug/l	тивири 16/РМ 30
>EC16-EC21	<10	<10						<10	ug/l	TMS/PM16/PM30
>EC21-EC35 4 <10 <1	<10	<10						<10	ug/l	TMS/PM16/PM30
Total aromatics C5-35* <10 <1	<10	<10						<10	ug/l	Telephone representation
Total aliphatics and aromatics(C5-35)* <10 <1	<10	<10						<10	ug/l	tion and a second
PCBs (Total vs Aroclor 1254) <0.2 <0.	<0.2	<0.2						<0.2	ug/l	TM17/PM30
Chloride* 60.6 2.5	14.9	15.0		-		-	-	<0.3	mg/l	TM38/PM0
Ortho Phosphate as PO4 * <0.06 <0.0		<0.06	-		1			<0.06	mg/l	TM38/PM0
Total Oxidised Nitrogen as N# <0.2 0.6	0.4	0.2						<0.2	mg/l	TM38/PM0
Ammoniacal Nitrogen as N 0.10 0.0	0.05	0.04	+					<0.03	mg/l	TM38/PM0
Electrical Conductivity @25C 541 33	422	356						<2	uS/cm	TM76/PM0
pH# 7.60 7.6	7.66	7.75						<0.01	pH units	TM73/PM0
Total Nitrogen 5.4 5.6	5.0	3.2						<0.5	mg/l	TM36/TM125/PM0

QF-PM 3.1.2 v11

Please include all sections of this report if it is reproduced All solid results are expressed on a dry weight basis unless stated otherwise.

Client Name: Reference: AWN Consulting

SVOC Report :

Liquid

Location:

Edgeconnex, Grangecastle

Contact:

Colm Driver

Batch Number 1	srnzozo 10.20 z z z z z z z z z z z z z z z z z z z	2811/2020 10:30 Ground Water 1 1 26/11/2020 11 20:51 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	25/11/2020 11:00 Ground Water 1					Units Un	
Depth COC No / misc Sample Date Sample Date Sample Type Batch Number Date of Receipt 26/11/2020 26	V H HN P G V seriozaza 10.20 2 2 2 3 3 round Water 6 1 1 2 6 1 1 1 2 6 1 1 1 2 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	V H HN P G 25rr 10020 10:30 Ground Water 1 40.5 40.5 40.5 40.5 41 40.5 41 40.5 41 41 41 41 41	V H HN P G 39110020 1130 Ground Water 1 1 40.5 40.5 40.5 40.5 41 40.5 41 410 41 41 41				Abbrevia Control Con	Units Units Ug/l	Method No. TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30
COC No / misc Containers Sample Type Batch Number Date of Receipt SVOC MS Phenols 2-Chlorophenol "	srnzozo 10.20 z z z z z z z z z z z z z z z z z z z	2811/2020 10:30 Ground Water 1 1 26/11/2020 11 20:51 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	2011/0020 1130 Ground Water 1 1 26/11/2020 <1 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <10 <1 <10				Abbrevia Control Con	Units Units Ug/l	Method No. TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30
COC No / misc Containers Sample Type Batch Number Date of Receipt SVOC MS Phenols 2-Chlorophenol "	srnzozo 10.20 z z z z z z z z z z z z z z z z z z z	2811/2020 10:30 Ground Water 1 1 26/11/2020 11 20:51 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	2011/0020 1130 Ground Water 1 1 26/11/2020 <1 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <10 <1 <10				Abbrevia Control Con	Units Units Ug/l	Method No. TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30
Sample Date	srnzozo 10.20 z z z z z z z z z z z z z z z z z z z	2811/2020 10:30 Ground Water 1 1 26/11/2020 11 20:51 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	2011/0020 1130 Ground Water 1 1 26/11/2020 <1 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5				<1 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Agu Ngu Ngu Ngu Ngu Ngu Ngu Ngu Ngu	No. TM16/PM30
Sample Type Batch Number 1 26/11/2020 26	Cround Water of 1 1 26/11/2020 2 2 41 40.5 40.5 40.5 40.5 41 40.5 41 41 41 41 41 41 41 41 41 41 41 41 41	Cround Water 1 26/11/2020	Ground Water 1 1 26/11/2020 <1 <0.5 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <1 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1				<1 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Agu Ngu Ngu Ngu Ngu Ngu Ngu Ngu Ngu	No. TM16/PM30
Batch Number	1	1 26/11/2020 <1 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5	1 26/11/2020				<1 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Agu Ngu Ngu Ngu Ngu Ngu Ngu Ngu Ngu	No. TM16/PM30
Date of Receipt 26/11/2020 26	26/11/2020 : <1	26/11/2020 <1	26/11/2020 <1				<1 <0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	Agu Ngu Ngu Ngu Ngu Ngu Ngu Ngu Ngu	No. TM16/PM30
SVOC MS	<1 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.5 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7 <0.7<	1 05 05 05 05 05 05 05 05 05 05 05 05 05	1				<0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 <10 <10 <1	Ngu Ngu Ngu Ngu Ngu Ngu Ngu Ngu	TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30
Phenois 2-Chlorophenol *	40.5 40.5 40.5 41 40.5 41 40.5 41<	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	05 05 05 05 0 05 0 05 0 05 0 0 0 0 0 0				<0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 <10 <10 <1	Ngu Ngu Ngu Ngu Ngu Ngu Ngu Ngu	TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30
2-Chlorophenol	40.5 40.5 40.5 41 40.5 41 40.5 41<	0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5	05 05 05 05 0 05 0 05 0 05 0 0 0 0 0 0				<0.5 <0.5 <0.5 <1 <0.5 <1 <0.5 <1 <10 <10 <1	Ngu Ngu Ngu Ngu Ngu Ngu Ngu Ngu	TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30
2-Methylphenol	40.5 40.5 41 40.5 41 40.5 41 <td>40.5 40.5 41 40.5 41 40.5 41<td>05 05 01 05 05 05 05 01 00 01 01 01 01</td><td></td><td></td><td></td><td><0.5 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <10 <10 <1</td><td>Ngu Ngu Ngu Ngu Ngu Ngu Ngu</td><td>TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30</td></td>	40.5 40.5 41 40.5 41 40.5 41 <td>05 05 01 05 05 05 05 01 00 01 01 01 01</td> <td></td> <td></td> <td></td> <td><0.5 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <10 <10 <1</td> <td>Ngu Ngu Ngu Ngu Ngu Ngu Ngu</td> <td>TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30</td>	05 05 01 05 05 05 05 01 00 01 01 01 01				<0.5 <0.5 <1 <0.5 <1 <0.5 <1 <0.5 <1 <10 <10 <1	Ngu Ngu Ngu Ngu Ngu Ngu Ngu	TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30
2-Nitrophenol	40.5 41 40.5 41 41 41 41 41 41 41 41 41 41 41 41 41	405 41 405 41 405 41 41 41 41 41 45 41 45 45 45 47 47 47 47 47 47 47 47 47 47	40.5 41 40.5 41 40.5 41 410 41 42 41 41 41 42 41 41 42 43 44 44 44 45 41 41 42 44				<0.5 <1 <0.5 <1 <0.5 <1 <10 <1	Ngu Ngu Ngu Ngu Ngu Ngu Ngu	TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30
2.4-Dimethylphenol	40.5 41 40 41 41 41 41 41 41 41 41 41 41 41 41 41	<1 <0.5 <1 <0.5 <1 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <	41 40.5 41 40.5 41 41 41 41 41 41 45 41				<1 <0.5 <1 <0.5 <1 <10 <1	Ngu Ugu Ugu Ngu Ngu Ngu	TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30
2.4,5-Trichlorophenol	 40.5 41 40.5 41 41<td> 0.5 0.5 0.5 0.7 /ul></td><td>40.5 41 40.5 41 410 41 41 45 41</td><td></td><td></td><td></td><td><0.5 <1 <0.5 <1 <10 <1</td><td>ng/l ug/l ug/l ug/l ug/l</td><td>TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30</td>	 0.5 0.5 0.5 0.7 /ul>	40.5 41 40.5 41 410 41 41 45 41				<0.5 <1 <0.5 <1 <10 <1	ng/l ug/l ug/l ug/l ug/l	TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30
2.4.6-Trichlorophenol	41 40.5 41 41 41 41 41 41 41 41 41 41	<1 <0.5 <1 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	41 40.5 41 410 41 41 41 45 41				<1 <0.5 <1 <10 <1	Ngu Ngu Ngu Ngu	TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30
4-Chloro-3-methylphenol*	<0.5 <1 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<0.5 <1 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<0.5 <1 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1				<0.5 <1 <10 <1	ug/l ug/l ug/l	TM16/PM30 TM16/PM30 TM16/PM30 TM16/PM30
4-Methylphenol <1 4-Nitrophenol <10 Pentachlorophenol <1 Phenol <1 PAHs 2-Chloronaphthalene	<1 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<1 <10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	रा रा0 रा रा रा रा				<1 <10 <1 <1	ug/l ug/l ug/l	TM16/PM30 TM16/PM30 TM16/PM30
4-Nitrophenol <10 Pentachlorophenol <1 Phenol	<10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<10 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	<10 <1 <1 <1 <5 <1				<10 <1 <1	ug/l ug/l	TM16/PM30 TM16/PM30
Pentachlorophenol <1 Phenol	<1 <1 <1 <2 <2 <1 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2 <2<	\(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\) \(\frac{1}{4}\)	ব ব ব ব ব				<1 <1	υgΛ	TM16/PM30
Phenol	<1 <1 <5 <1 <1.5 <1 <1	<1 <1 <5 <1 <1.5	ব ব ব ব						TM16/PM30
2-Chloronaphthalene	<1 <5 <1 <1.5 <1	<1 <5 <1 <1.5	<1 <5 <1				<1		1
2-Methylnaphthalene	<1 <5 <1 <1.5 <1	<1 <5 <1 <1.5	<1 <5 <1				<1		ļ
Phthalate	<5 <1 <1.5 <1	<5 <1 <1.5	<5 <1					ug/l	TM16/PM30
Bis(2-ethylhexyl) phthalate	<1 <1.5 <1 <1	<1 <1.5	<1				<1	ug/l	TM16/PM30
Butylbenzyl phthalate	<1 <1.5 <1 <1	<1 <1.5	<1			1	<5		T1 11 6 17 11 10 0
Di-n-butyl phthalate	<1.5 <1 <1	<1,5					<1	ug/l ug/l	TM16/PM30 TM16/PM30
Di-n-Octyl phthalate <1 Diethyl phthalate <1 Dimethyl phthalate <1 Other SVOCs	<1 <1						<1.5	ug/l	TM16/PM30
Diethyl phthalate 4 <1 Dimethyl phthalate <1 Other SVOCs		<1	<1			1	<1	ug/l	TM16/PM30
Other SVOCs		<1	<1			1	<1	ug/l	TM16/PM30
1.2-Dichlorohenzene 4 <1	<1	<1	<1				<1	ug/l	TM16/PM30
Market Control of the	<1	<1	<1				<1	ug/l	TM16/PM30
1,2,4-Trichlorobenzene * <1	<1	<1	<1				<1	ug/l	TM16/PM30
1,3-Dichlorobenzene <1	<1	<1	<1				<1	ug/l	TM16/PM30
1,4-Dichlorobenzene 4 <1 2-Nitroaniline <1	<1 <1	<1	<1				<1	ug/l ug/l	TM16/PM30 TM16/PM30
2.4-Dinitrotoluene <0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
2,6-Dinitrotoluene <1	<1	<1	<1				<1	ug/l	TM16/PM30
3-Nitroaniline <1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Bromophenylphenylether 4 <1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Chloroaniline <1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Chlorophenylphenylether <1	<1	<1	<1				<1	ug/l	TM16/PM30
4-Nitroaniline <0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Azobenzene 4 <0.5 Bis(2-chloroethoxy)methane 4 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5				<0.5 <0.5	ug/l ug/l	TM16/PM30 TM16/PM30
Bis(2-chloroethoxy)methane <0.5 Bis(2-chloroethyl)ether <1	<1	<1	<1				<1	ug/l	TM16/PM30
Carbazole 4 <0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Dibenzofuran 4 <0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30
Hexachlorobenzene 4 <1	<1	<1	<1				<1	ug/l	TM16/PM30
Hexachlorobutadiene 4 <1	<1	<1	<1				<1	ug/l	TM16/PM30
Hexachlorocyclopentadiene <1	<1	<1	<1				<1	ug/l	TM16/PM30
Hexachloroethane <1	<1	<1	<1				<1	ug/l	TM16/PM30
Isophorone <0.5	<0.5	<0.5	<0.5				<0.5	ug/l	TM16/PM30 TM16/PM30
N-nitrosodi-n-propytamine <0.5 Nitrobenzene <1	<0.5	<0.5 <1	<0.5 <1				<0.5	ug/l ug/l	TM16/PM30 TM16/PM30
	63 ^{sv}	70	118				<0	%	TM16/PM30
	62 ^{SV}	68	114				<0	%	TM16/PM30

QF-PM 3.1.3 v11

Please include all sections of this report if it is reproduced All solid results are expressed on a dry weight basis unless stated otherwise.

Client Name:

AWN Consulting

VOC Report :

Liquid

Reference: Location:

Edgeconnex, Grangecastle

Contact: EMT Job No: Colm Driver 20/16584

EMT Job No:	20/16584												
EMT Sample No.	1-6	7-12	13-18	19-24	53 18		100	B-37	ALC: C]		
Sample ID	BH05	BH10	BH11	BH15									
Depth COC No / misc												attached ations and a	notes for all acronyms
Containers Sample Date	A STATE OF THE PARTY OF THE PAR	25/11/2020 10:20	THE PERSON NAMED IN	V H HN P G		1		-					
Sample Type	Ground Water		Ground Water				-				1		
Batch Number	1	1	1	1							I		Method
Date of Receipt	26/11/2020	26/11/2020	26/11/2020	26/11/2020		-					LOD/LOR	Units	No.
VOC MS							In Establish						
Dichlorodifluoromethane	<2	<2	<2	<2							<2	ug/l	TM15/PM10
Methyl Tertiary Butyl Ether*	<0.1	<0.1	<0.1	<0.1							<0.1	ug/l	TM15/PM10
Chloromethane *	<3	<3	<3	<3							<3	ug/l	TM15/PM10
Vinyl Chloride *	<0.1	<0.1	<0.1	<0.1							<0.1	ug/l	TM15/PM10
Bromomethane	<1	<1	<1	<1							<1	ug/l	TM15/PM10
Chloroethane "	<3	<3	<3	<3							<3	ug/l	TM15/PM10
Trichlorofluoromethane	<3 <3	<3	<3	<3							<3	ug/l	TM15/PM10
1,1-Dichloroethene (1,1 DCE)* Dichloromethane (DCM)*	<5	<5	<5	· 5							<3 <5	ug/l	TM15/PM10 TM15/PM10
trans-1-2-Dichloroethene*	<3	3	<3	<3				_			<3	ug/l	TM15/PM10
1,1-Dichloroethane*	<3	3	3	3							3	ug/l	TM15/PM10
cis-1-2-Dichloroethene	<3	<3	3	<3		1					3	ug/l	TM15/PM10
2,2-Dichloropropane	<1	<1	<1	<1							<1	ug/l	TM15/PM10
Bromochloromethane*	<2	<2	<2	<2							2	ug/l	TM15/PM10
Chloroform*	<2	<2	<2	<2							<2	ug/l	TM15/PM10
1,1,1-Trichloroethane	<2	<2	<2	-2							<2	ug/l	TM15/PM10
1,1-Dichloropropene *	<3	<3	<3	<3							<3	ug/l	TM15/PM10
Carbon tetrachloride *	<2	<2	<2	<2							<2	ug/l	TM15/PM10
1,2-Dichloroethane*	<2	<2	<2	<2							<2	ug/l	TM15/PM10
Benzene*	<0.5	<0.5	<0.5	<0.5						1	<0.5	ug/l	TM15/PM10
Trichloroethene (TCE)*	<3	<3	<3	<3							<3	ug/l	TM15/PM10
1,2-Dichloropropane	3	2	<2	<2							<2	ug/l	TM15/PM10
Dibromomethane * Bromodichloromethane *	<2	<3 <2	<3	3					-		<3	ug/l	TM15/PM10
cis-1-3-Dichloropropene	<2	<2	<2	<2				-			<2	ug/l	TM15/PM10 TM15/PM10
Toluene *	<5	<5	<5	<5				-			<5	ug/l ug/l	TM15/PM10
trans-1-3-Dichloropropene	<2	<2	2	<2							<2	ug/l	TM15/PM10
1,1,2-Trichloroethane	<2	<2	<2	<2							2	ug/l	TM15/PM10
Tetrachloroethene (PCE)*	<3	3	<3	<3							3	ug/l	TM15/PM10
1,3-Dichloropropane	<2	<2	<2	<2							<2	ug/l	TM15/PM10
Dibromochloromethane*	<2	<2	<2	2							<2	ug/l	TM15/PM10
1,2-Dibromoethane*	<2	<2	<2	<2							~2	ug/l	TM15/PM10
Chlorobenzene *	<2	<2	<2	<2							<2	ug/l	TM15/PM10
1,1,1,2-Tetrachloroethane*	<2	<2	<2	<2							<2	ug/l	TM15/PM10
Ethylbenzene*	<1	<1	<1	<1							<1	ug/l	TM15/PM10
m/p-Xylene	<2	<2	<2	<2							<2	ug/l	TM15/PM10
o-Xylene *	<1	<1	<1	<1		-					<1	ug/l	TM15/PM10
Styrene *	<2 <2	<2	<2	<2							<2	ug/l	TM15/PM10
Bromoform* Isopropylbenzene*	<3	<3	<3	<3				-	+	_	<3	ug/l	TM15/PM10 TM15/PM10
1,1,2,2-Tetrachloroethane	<4	<4	<4	<4							<4	ug/l	TM15/PM10
Bromobenzene *	<2	<2	<2	<2							<2	ug/l	TM15/PM10
1,2,3-Trichloropropane*	<3	<3	<3	3						-	<3	ug/l	TM15/PM10
Propylbenzene *	<3	<3	<3	<3							<3	ug/l	TM15/PM10
2-Chlorotoluene *	<3	<3	<3	<3							<3	ug/l	TM15/PM10
1,3,5-Trimethylbenzene *	<3	<3	<3	<3							<3	ug/l	TM15/PM10
4-Chlorotoluene *	<3	<3	<3	<3							<3	ug/l	TM15/PM10
tert-Butylbenzene*	<3	<3	<3	<3							<3	ug/l	TM15/PM10
1,2,4-Trimethylbenzene	<3	<3	<3	<3		-			-		<3	ug/l	TM15/PM10
sec-Butylbenzene	<3	<3	<3	<3							<3	ug/l	TM15/PM10
4-Isopropyltoluene	<3	<3	<3	<3		_			-		<3	ug/l	TM15/PM10
1,3-Dichlorobenzene * 1.4-Dichlorobenzene *	<3	<3	3	<3				-			<3	ug/I	TM15/PM10 TM15/PM10
n-Butylbenzene	3	3	3	<3		-					<3	ug/l ug/l	TM15/PM10 TM15/PM10
1,2-Dichlorobenzene*	3	<3	3	<3					-		<3	ug/l	TM15/PM10
1,2-Dibromo-3-chloropropane	2	0	0	<2						-	2	ug/l	TM15/PM10
1,2,4-Trichlorobenzene	<3	<3	3	3		-				- "	<3	ug/l	TM15/PM10
Hexachlorobutadiene	<3	<3	3	3							<3	ug/l	TM15/PM10
Naphthalene	<2	<2	<2	<2							<2	ug/l	TM15/PM10
1,2,3-Trichlorobenzene	<3	<3	<3	<3							3	ug/l	TM15/PM10
Surrogate Recovery Toluene D8	97	96	96	96							<0	%	TM15/PM10
Surrogate Recovery 4-Bromofluorobenzene	94	96	95	95							<0	%	TM15/PM10

QF-PM 3.1.4 v11

Please include all sections of this report if it is reproduced All solid results are expressed on a dry weight basis unless stated otherwise.

Notification of Deviating Samples

Client Name:

AWN Consulting

Reference: Location:

Edgeconnex, Grangecastle

MT ob lo.	Batch	Sample ID	Depth	EMT Sample No.	Analysis	Reason
	Nach a		Washington.	- had being	No deviating sample report results for job 20/16584	Notice and the second in the second
						(

Please note that only samples that are deviating are mentioned in this report. If no samples are listed it is because none were devi Only analyses which are accredited are recorded as deviating if set criteria are not met.

QF-PM 3.1.11 v3

Please include all sections of this report if it is reproduced

NOTES TO ACCOMPANY ALL SCHEDULES AND REPORTS

EMT Job No.:

20/16584

SOILS

Please note we are only MCERTS accredited (UK soils only) for sand, loam and clay and any other matrix is outside our scope of accreditation.

Where an MCERTS report has been requested, you will be notified within 48 hours of any samples that have been identified as being outside our MCERTS scope. As validation has been performed on clay, sand and loam, only samples that are predominantly these matrices, or combinations of them will be within our MCERTS scope. If samples are not one of a combination of the above matrices they will not be marked as MCERTS accredited.

It is assumed that you have taken representative samples on site and require analysis on a representative subsample. Stones will generally be included unless we are requested to remove them.

All samples will be discarded one month after the date of reporting, unless we are instructed to the contrary.

If you have not already done so, please send us a purchase order if this is required by your company.

Where appropriate please make sure that our detection limits are suitable for your needs, if they are not, please notify us immediately.

All analysis is reported on a dry weight basis unless stated otherwise. Limits of detection for analyses carried out on as received samples are not moisture content corrected. Results are not surrogate corrected. Samples are dried at 35°C ±5°C unless otherwise stated. Moisture content for CEN Leachate tests are dried at 105°C ±5°C.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

Where a CEN 10:1 ZERO Headspace VOC test has been carried out, a 10:1 ratio of water to wet (as received) soil has been used.

% Asbestos in Asbestos Containing Materials (ACMs) is determined by reference to HSG 264 The Survey Guide - Appendix 2 : ACMs in buildings listed in order of ease of fibre release.

Sufficient amount of sample must be received to carry out the testing specified. Where an insufficient amount of sample has been received the testing may not meet the requirements of our accredited methods, as such accreditation may be removed.

Negative Neutralization Potential (NP) values are obtained when the volume of NaOH (0.1N) titrated (pH 8.3) is greater than the volume of HCI (1N) to reduce the pH of the sample to 2.0 - 2.5. Any negative NP values are corrected to 0.

The calculation of Pyrite content assumes that all oxidisable sulphides present in the sample are pyrite. This may not be the case. The calculation may be an overesitimate when other sulphides such as Barite (Barium Sulphate) are present.

WATERS

Please note we are not a UK Drinking Water Inspectorate (DWI) Approved Laboratory .

ISO17025 accreditation applies to surface water and groundwater and usually one other matrix which is analysis specific, any other liquids are outside our scope of accreditation.

As surface waters require different sample preparation to groundwaters the laboratory must be informed of the water type when submitting samples.

Where Mineral Oil or Fats, Oils and Grease is quoted, this refers to Total Aliphatics C10-C40.

DEVIATING SAMPLES

All samples should be submitted to the laboratory in suitable containers with sufficient ice packs to sustain an appropriate temperature for the requested analysis. The temperature of sample receipt is recorded on the confirmation schedules in order that the client can make an informed decision as to whether testing should still be undertaken.

SURROGATES

Surrogate compounds are added during the preparation process to monitor recovery of analytes. However low recovery in soils is often due to peat, clay or other organic rich matrices. For waters this can be due to oxidants, surfactants, organic rich sediments or remediation fluids. Acceptable limits for most organic methods are 70 - 130% and for VOCs are 50 - 150%. When surrogate recoveries are outside the performance criteria but the associated AQC passes this is assumed to be due to matrix effect. Results are not surrogate corrected.

DILUTIONS

A dilution suffix indicates a dilution has been performed and the reported result takes this into account. No further calculation is required.

BLANKS

Where analytes have been found in the blank, the sample will be treated in accordance with our laboratory procedure for dealing with contaminated blanks.

NOTE

Data is only reported if the laboratory is confident that the data is a true reflection of the samples analysed. Data is only reported as accredited when all the requirements of our Quality System have been met. In certain circumstances where all the requirements of the Quality System have not been met, for instance if the associated AQC has failed, the reason is fully investigated and documented. The sample data is then evaluated alongside the other quality control checks performed during analysis to determine its suitability. Following this evaluation, provided the sample results have not been effected, the data is reported but accreditation is removed. It is a UKAS requirement for data not reported as accredited to be considered indicative only, but this does not mean the data is not valid.

Where possible, and if requested, samples will be re-extracted and a revised report issued with accredited results. Please do not hesitate to contact the laboratory if further details are required of the circumstances which have led to the removal of accreditation.

QF-PM 3.1.9 v34

Please include all sections of this report if it is reproduced All solid results are expressed on a dry weight basis unless stated otherwise.

EMT Job No.:

20/16584

REPORTS FROM THE SOUTH AFRICA LABORATORY

Any method number not prefixed with SA has been undertaken in our UK laboratory unless reported as subcontracted.

Measurement Uncertainty

Measurement uncertainty defines the range of values that could reasonably be attributed to the measured quantity. This range of values has not been included within the reported results. Uncertainty expressed as a percentage can be provided upon request.

ABBREVIATIONS and ACRONYMS USED

#	ISO17025 (UKAS Ref No. 4225) accredited - UK.
SA	ISO17025 (SANAS Ref No.T0729) accredited - South Africa
В	Indicates analyte found in associated method blank.
DR	Dilution required.
М	MCERTS accredited.
NA	Not applicable
NAD	No Asbestos Detected.
ND	None Detected (usually refers to VOC and/SVOC TICs).
NDP	No Determination Possible
ss	Calibrated against a single substance
sv	Surrogate recovery outside performance criteria. This may be due to a matrix effect.
w	Results expressed on as received basis.
+	AQC failure, accreditation has been removed from this result, if appropriate, see 'Note' on previous page.
>>	Results above calibration range, the result should be considered the minimum value. The actual result could be significantly higher, this result is not accredited.
×	Analysis subcontracted to an Element Materials Technology approved laboratory.
AD	Samples are dried at 35°C ±5°C
СО	Suspected carry over
LOD/LOR	Limit of Detection (Limit of Reporting) in line with ISO 17025 and MCERTS
ME	Matrix Effect
NFD	No Fibres Detected
BS	AQC Sample
LB	Blank Sample
N	Client Sample
ТВ	Trip Blank Sample
ОС	Outside Calibration Range

QF-PM 3.1.9 v34

Please include all sections of this report if it is reproduced All solid results are expressed on a dry weight basis unless stated otherwise.

Method Code Appendix

EMT Job No: 20/16584

est Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported or dry weight basis
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM4	Modified USEPA 8270D v5:2014 method for the solvent extraction and determination of PAHs by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
тмь	Modified 8015B v2:1996 method for the determination of solvent Extractable Petroleum Hydrocarbons (EPH) within the range CB-C40 by GCPID. For waters the solvent extracts dissolved phase plus a sheen If present.	PM16/PM30	Fractionation into alliphatic and aromatic fractions using a Rapid Trace SPE/Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM5/TM36	please refer to TM5 and TM36 for method details	PM12/PM16/PM30	please refer to PM16/PM30 and PM12 for method details	Yes			
TM15	Modified USEPA 82608 v2 1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS	PM10	Modified US EPA method 5021A v2.2014. Preparation of solid and liquid samples for GC headspace analysis.				
TM15	Modified USEPA 8260B v2 1996. Quantitative Determination of Volatile Organic Compounds (VOCs) by Headspace GC-MS.	PM10	Modified US EPA method 5021A v2 2014. Preparation of solid and liquid samples for GC head-space analysis.	Yes			
TM16	Modified USEPA 82700 v5.2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
TM16	Modified USEPA 8270D v5 2014. Quantitative determination of Semi-Volatile Organic compounds (SVOCs) by GC-M3.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.	Yes			
TM17	Modified US EPA method 6270D v5.2014 Determination of specific Polychionnated Biphenyl congenies by GC-MS.	PM30	Water samples are extracted with solvent using a magnetic stirrer to create a vortex.				
тмзо	Determination of Trace Metals by ICP-0ES (Inductively Coupled Plasma – Ciptical Emission Spectrometry): WATERS by Modified USEPA Method 2007, Rev. 4.4, 1994; Modified EPA Method 6010B, Rev. 2, Dec. 1996, Modified BS EN ISO 11885, 2009; SOUS by Modified USEP	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified				

QF-PM 3.1.10 v14

Please include all sections of this report if it is reproduced

9 of 10

Element Materials Technology

Method Code Appendix

EMT Job No: 20/16584

Test Method No.	Description	Prep Method No. (if appropriate)	Description	ISO 17025 (UKAS/S ANAS)	MCERTS (UK soils only)	Analysis done on As Received (AR) or Dried (AD)	Reported on dry weight basis
TM30	Determination of Trace Metals by ICP-DES (inductively Coupled Plasma – Optical Emission Spectrometry: WATERS by Modified USEPA Method 200.7, Rev. 4.4, 1994; Modified EPA Method 50/108, Rev. 2, Dec. 1995; Modified BS EH ISO 11885/2009 SOLS by Modified USEP	PM14	Preparation of waters and leachates for metals by ICP OES/ICP MS. Samples are filtered for Dissolved metals, and remain unfiltered for Total metals then acidified	Yes			
TM36	Modified US EPA method 8015B v2 1996. Determination of Gasoline Range Organics. (GRC) in the carbon chain range of C4-12 by headspace GC-PID. MTBE by GCPID co- elutes with 3-methylpientane if present and therefore can give a false positive. Positive. MTBE results will be re-up using GC-MS to double check, when requested.	PM12	Modified US EPA method 5021A v2.2014. Preparation of solid and liquid samples for GC headspace analysis.	Yes			=
TM38	Soluble Ion analysis using Discrete Analyser: Modified US EPA methods: Chloride 325.2 (1976), Sulphate 375.4 (Rev. 2.1993), o-Phosphate 365.2 (Rev. 2.1993), TON 363.1 (Rev. 2.1993), Nimite 354.1 (1971), Hax Cr. 7.196A (1992), NH4+350.1 (Rev. 2.1993) (comparabl	PM0	No-preparation is required.	Yes			
TM38/TM125	Total Nitogen/Organic Nitrogen by calculation	PMO	No preparation is required.				
TM73	Modified US EPA methods 150.1 (1982) and 90450 Rev. 4 - 2004) and BS1377- 3.1990. Determination of pH by Metrohm automated probe analyser	PMO	No preparation is required.	Yes			
TMT6	Modified US EPA method 120.1 (1992). Determination of Specific Conductance by Metrohim automated probe analyser.	PMO	No preparation is required.	Yes			
	×						

QF-PM 3,1.10 v14

Please include all sections of this report if it is reproduced

CHAPTER 8 - HYDROLOGY

Appendix 8.1 Criteria for rating Site Attributes - Estimation of Importance of Hydrology Attributes (NRA)

Importance	Criteria	Typical Examples
Extremely High	Attribute has a high quality or value on an international scale	River, wetland or surface water body ecosystem protected by EU legislation e.g. 'European sites' designated under the Habitats Regulations or 'Salmonid waters' designated pursuant to the European Communities (Quality of Salmonid Waters) Regulations, 1988.
Very High	Attribute has a high quality or value on a regional or national scale	River, wetland or surface water body ecosystem protected by national legislation – NHA status Regionally important potable water source supplying >2500 homes Quality Class A (Biotic Index Q4, Q5) Flood plain protecting more than 50 residential or commercial properties from flooding Nationally important amenity site for wide range of leisure activities
High	Attribute has a high quality or value on a local scale	Salmon fishery Locally important potable water source supplying >1000 homes Quality Class B (Biotic Index Q3-4) Flood plain protecting between 5 and 50 residential or commercial properties from flooding Locally important amenity site for wide range of leisure activities
Medium	Attribute has a medium quality or value on a local scale	Coarse fishery Local potable water source supplying >50 homes Quality Class C (Biotic Index Q3, Q2-3) Flood plain protecting between 1 and 5 residential or commercial properties from flooding
Low	Attribute has a low quality or value on a local scale	Locally important amenity site for small range of leisure activities Local potable water source supplying <50 homes Quality Class D (Biotic Index Q2, Q1) Flood plain protecting 1 residential or commercial property from flooding Amenity site used by small numbers of local people

Estimation of magnitude of impact on hydrology attribute (NRA)

Magnitude of Impact	Criteria	Typical Examples
		Loss or extensive change to a waterbody or water dependent habitat.
		Increase in predicted peak flood level
	Regulte in lose of attribute	>100mm.
Large Adverse		Extensive loss of fishery.
		Calculated risk of serious pollution incident
		>2% annually.
		Extensive reduction in amenity value.
	ė –	Increase in predicted peak flood level
		>50mm.
Results in impact on integrity of		Partial loss of fishery.
Moderate Adverse		Calculated risk of serious pollution incident
		>1% annually.
		Partial reduction in amenity value.
		Increase in predicted peak flood level
		>10mm.
	small part of attribute or loss of	Minor loss of fishery.
Small Adverse		Calculated risk of serious pollution incident
		>0.5% annually.
		Slight reduction in amenity value.
100 July 200 to	Results in an impact on attribute	Negligible change in predicted peak flood level.
Negligible	but of insufficient magnitude to affect either use or integrity	Calculated risk of serious pollution incident
	aneot entire use of integrity	<0.5% annually.
	1	Doduction in predicted week fleed level
		Reduction in predicted peak flood level
Minor Beneficial	Results in minor improvement of attribute quality	>10mm.
	Control of the Contro	Calculated reduction in pollution risk of 50% or more where existing risk is <1% annually.
		Reduction in predicted peak flood level
Moderate Beneficial	Results in moderate improvement	>50mm.
vioderate Deficition	of attribute quality	Calculated reduction in pollution risk of 50% or more
		where existing risk is >1% annually.
	Results in major improvement of	
Major Beneficial	attribute quality	Reduction in predicted peak flood level >100mm

Rating of Significant Environmental Impacts at EIS Stage (NRA)

Importance of	Magnitude of Importance									
Attribute	Negligible	Small Adverse	Moderate Adverse	Large Adverse						
Extremely Imperceptible Significant High	Profound	Profound								
Very High Imperceptible Significant/moderate		Significant/moderate	Profound/Significant	Profound						
High	Imperceptible	Moderate/Slight	Significant/moderate	Profound/Significant						
Medium	Imperceptible	Slight	Moderate	Significant						
		Imperceptible	Slight	Slight/Moderate						

CHAPTER 9 - NOISE AND VIBRATION

Appendix 9.1 Glossary of acoustic terminology (prepared by AWN Consulting Ltd.)

ambient noise The totally encompassing sound in a given situation at a given time, usually

composed of sound from many sources, near and far.

background noise The steady existing noise level present without contribution from any intermittent

sources. The A-weighted sound pressure level of the residual noise at the assessment position that is exceeded for 90 per cent of a given time interval, T

(LAF90,T).

broadband Sounds that contain energy distributed across a wide range of frequencies.

dB Decibel - The scale in which sound pressure level is expressed. It is defined as

20 times the logarithm of the ratio between the RMS pressure of the sound field

and the reference pressure of 20 micro-pascals (20 μ Pa).

dB L_{pA} An 'A-weighted decibel' - a measure of the overall noise level of sound across the

audible frequency range (20 Hz - 20 kHz) with A-frequency weighting (i.e. 'A'-weighting) to compensate for the varying sensitivity of the human ear to sound at

different frequencies.

Hertz (Hz) The unit of sound frequency in cycles per second.

impulsive noise A noise that is of short duration (typically less than one second), the sound

pressure level of which is significantly higher than the background.

LAeq,T This is the equivalent continuous sound level. It is a type of average and is used

to describe a fluctuating noise in terms of a single noise level over the sample period (T). The closer the LAeq value is to either the LAF10 or LAF90 value indicates the relative impact of the intermittent sources and their contribution. The relative spread between the values determines the impact of intermittent sources such as

traffic on the background.

Lafn The A-weighted noise level exceeded for N% of the sampling interval. Measured

using the "Fast" time weighting.

LAFmax is the instantaneous slow time weighted maximum sound level measured during

the sample period (usually referred to in relation to construction noise levels).

L_{Ar,T} The Rated Noise Level, equal to the L_{Aeq} during a specified time interval (T), plus

specified adjustments for tonal character and impulsiveness of the sound.

L_{AF90} Refers to those A-weighted noise levels in the lower 90 percentile of the sampling

interval; it is the level which is exceeded for 90% of the measurement period. It will therefore exclude the intermittent features of traffic and is used to estimate a

background level. Measured using the "Fast" time weighting.

L_{AT}(DW) equivalent continuous downwind sound pressure level.

L_π(DW) equivalent continuous downwind octave-band sound pressure level.

L_{dav} L_{dav} is the average noise level during the daytime period of 07:00hrs to 19:00hrs

L_{night} is the average noise level during the night-time period of 23:00hrs to

07:00hrs.

low frequency noise LFN - noise which is dominated by frequency components towards the lower end

of the frequency spectrum.

noise Any sound, that has the potential to cause disturbance, discomfort or

psychological stress to a person exposed to it, or any sound that could cause

actual physiological harm to a person exposed to it, or physical damage to any structure exposed to it, is known as noise.

noise sensitive location NSL - Any dwelling house, hotel or hostel, health building, educational establishment, place of worship or entertainment, or any other facility or other area of high amenity which for its proper enjoyment requires the absence of noise at nuisance levels.

octave band

A frequency interval, the upper limit of which is twice that of the lower limit. For example, the 1,000Hz octave band contains acoustical energy between 707Hz and 1,414Hz. The centre frequencies used for the designation of octave bands are defined in ISO and ANSI standards.

rating level

See LAr,T.

sound power level

The logarithmic measure of sound power in comparison to a referenced sound intensity level of one picowatt (1pW) per m2 where:

$$Lw = 10Log \frac{P}{P_0} dB$$

Where: p is the rms value of sound power in pascals; and P_0 is 1 pW.

sound pressure level

The sound pressure level at a point is defined as:

$$Lp = 20Log \frac{P}{P_0} dB$$

specific noise level

A component of the ambient noise which can be specifically identified by acoustical means and may be associated with a specific source. In BS 4142, there is a more precise definition as follows: 'the equivalent continuous Aweighted sound pressure level at the assessment position produced by the specific noise source over a given reference time interval (LAeq, T)'.

tonal

Sounds which cover a range of only a few Hz which contains a clearly audible tone i.e. distinguishable, discrete or continuous noise (whine, hiss, screech, or hum etc.) are referred to as being 'tonal'.

1/3 octave analysis

Frequency analysis of sound such that the frequency spectrum is subdivided into bands of one-third of an octave each.

Appendix 9.2 Noise monitoring details (AWN Consulting Ltd.)

A series of environmental noise surveys were conducted in order to quantify the existing noise environment. The survey was conducted in accordance with ISO/DIS 1996-2 Acoustics - Description, measurement and assessment of environmental noise -- Part 2: Determination of sound pressure levels (2015). Specific details are set out below.

Choice of noise monitoring locations

Noise measurements were conducted at three positions on the site boundary that are reflective of noise levels at the nearest noise sensitive locations and the common boundary with the Cuisine de France facility to the west. Details for the particular locations are outlined below:

- Location S01 Located in the north western corner of the site in line with the common boundary of the nearest noise sensitive locations at the junction of the R102 and the Grand Canal.
- Location S02 Located on the south western corner of the site along with the common boundary of a nearby noise sensitive location. The location is representative of the row of noise sensitive locations that along the R102 beyond the western boundary of the proposed development.
- Location S03 Located in the vicinity of the nearest residential location to the north east of the proposed development site. The property is located on the boundary of the Grangecastle Business Park and is immediately adjacent a number of commercial activities.
- Location S04 Located in the north eastern concern of the development lands. This location is considered to be representative of noise levels currently experienced in the vicinity of the residential properties on the Royal Canal to the north.
- Location S05 Located in the south western concern of the development lands. The location is considered to be representative of noise levels currently experienced in the vicinity of the halting site located to the south west at some 200 m distance.

Figure A Noise monitoring locations (Source: Bing Maps)

Survey periods

Measurements were conducted over the course of the following survey periods:

Table A Noise monitoring periods

Locations	Period	Start Time/Date	End Time/Date
CO1 CO2 CO2	Day	09:50hrs 9 April 2016	12:40hrs 9 April 2016
S01, S02, S03	Evening	21:40hrs 9 April 2016	22:50hrs 9 April 2016

	Night	23:00hrs 9 April 2016	01:40hrs 10 April 2016
S04, S05	Unattended	15:00hrs 4 November 2020	11:45hrs 10 November 2020

Personnel & Instrumentation

AWN conducted the noise level measurements during the various survey periods. The measurements were performed using Brüel & Kjær Type 2260 Modular Precision Sound Analysers. Before and after the survey the measurement apparatus was check calibrated using a Brüel & Kjær Type 4231 Sound Level Calibrator. Donogh Casey installed and removed the noise meters on site in the 2020 unattended survey.

Table B Instrumentation details

Meter	Serial Number
Brüel & Kjær 2260	2248262
Rion NL-42	575802
Rion NL-52	186670

Procedure

During each of the daytime, evening and night-time periods, measurements were conducted on a continuous basis over the stated time periods. Sample periods were 15 minutes during all surveys. The results were saved to the instrument memory for later analysis where appropriate. Survey personnel noted all primary noise sources contributing to noise build-up. In terms of the various locations the following significant noise sources (in subjective order of influence) were noted:

Table C Significant noise sources

Loca	tion			
S01	S02			
 R120 road traffic noise. Water running in a nearby canal in absence of traffic. Site work and plant noise associated with existing sites. During evening period noise dominated by traffic and water noise associated with the canal. During night time plant noise from existing facilities (to the East and South) is the dominant background source. 	 Plant noise from facility to the south. Noise from existing site including impulsive noise (bangs) and reverse alarms. Dogs barking and birdsong. During the evening distant traffic noise and plant noise noted. During night time existing plant noise from souther existing facilities is the dominant source. Distant traffic also noted. 			
Loca	tion			
S03	S04			
 Noise dominated by existing plant noise from adjacent facility. Occasional bus passing by. Water flow from nearby watercourse. Reverse alarms and construction noise from nearby site. As above for evening period with the exception of construction noise. During night time plant noise from the adjacent facility and water flow from nearby watercourse. 	 R120 road traffic noise. Water flow from nearby watercourse. During night time plant noise from the adjacent facility and water flow from nearby watercourse noted. 			
Loca	tion			
S0	5			
 R120 road traffic noise. Water flow from nearby watercourse. During night time plant noise from the adjacent facility 				

Noise Monitoring Results

The noise data collated during the current noise survey is extensive in nature. It is not produced in full here however is available on request.

Table D presents average daytime and night time noise levels measured at the monitoring location over the period of the noise monitoring programme.

Table D Noise monitoring results

Locates	Data	Dealed	Ot at Time	Measured	Noise Levels (dB re.	2x10 ⁻⁵ Pa)
Location	9 April Day 09:51 9 April Day 11:15 9 April Evening 21:46 10 April Night 00:01 10 April Night 00:58 9 April Day 10:23 9 April Day 11:37 9 April Day 12:47 9 April Evening 22:04 9 April Night 23:38 10 April Night 01:20 9 April Day 10:50 9 April Day 12:05 9 April Day 12:21 9 April Evening 22:35 9 April Night 23:38	LAeq,15min	LAFMax	LA90,15min		
	9 April	Day	09:51	58	71	44
	9 April	Day	11:15	61	76	47
S01	9 April	Evening	21:46	53	63	45
	10 April	Night	00:01	48	61	42
	10 April	Night	00:58	49	67	43
	9 April	Day	10:23	48	65	42
	9 April	Day	11:37	48	73	41
000	9 April	Day	12:47	49	65	43
S02	9 April	Evening	22:04	44	61	41
	9 April	Night	23:38	41	63	39
	10 April	Night	01:20	40	61	38
	9 April	Day	10:50	53	76	47
	9 April	Day	12:05	53	73	48
600	9 April	Day	12:21	52	72	48
S03	9 April	Evening	22:35	51	68	49
	9 April	Night	23:00	51	70	48
	9 April	Night	23:16	49	54	48

Figure B Unattended Noise Monitoring – Location S04

09:15 11:45

Appendix 9.3 Indicative construction noise & vibration management plan

This Noise and Vibration Management Plan (NVMP) details a 'Best Practice' approach to dealing with potential noise and vibration emissions during the construction phase of the development. The Plan should be adopted by all contractors and sub-contractors involved in construction activities on the site. The Site Manager should ensure that adequate instruction is provided to contractors regarding the noise and vibration control measures contained within this document.

The environmental impact assessment report conducted for the construction activity has highlighted that the construction noise and vibration levels can be controlled to within the adopted criteria. However, mitigation measures should be implemented, where necessary, in order to control impacts to nearby sensitive areas within acceptable levels.

Nearby sensitive properties in the vicinity of the proposed development are summarised in Figure A below:

Figure A Sensitive receptors

Construction Noise Criteria

As referenced in the EIS prepared for the site, appropriate criteria relating to permissible construction noise levels for a development of this scale may be found in the National Roads Authority (NRA) publication *Guidelines for the Treatment of Noise and Vibration in National Road Schemes*¹⁴ which indicates the following criteria and hours of operation.

Table A Construction noise limit values

D. J.T.	Noise Levels (dB re. 2x10-5 Pa)				
Days and Times	LAeq(1hr)	L _{Amax}			
Monday to Friday 07:00hrs to 19:00hrs	70	80			
Monday to Friday 19:00 to 22:00hrs	60*	65*			
Saturdays 08:00hrs to 14:00hrs	65	75			

Note * Construction activity at these times, other than that required for emergency works, will normally require the explicit permission of the relevant local authority.

_

Guidelines for the Treatment of Noise and Vibration in National Road Schemes, Revision 1, 25 October 2004, National Roads Authority.

Construction Vibration Criteria

It is recommended in the EIS that vibration from construction activities to off-site residences be limited to the values set out in Table B. It should be noted that these limits are not absolute, but provide guidance as to magnitudes of vibration that are very unlikely to cause cosmetic damage. Magnitudes of vibration slightly greater than those in the table are normally unlikely to cause cosmetic damage, but construction work creating such magnitudes should proceed with caution. Where there is existing damage these limits may need to be reduced by up to 50%.

Table B Construction vibration limit values

	Allowable vibration (in terms of peak particle velocity) at the closest part of sensitive property to the source of vibration, at a frequency of						
Less than 10 Hz	10 to 50 Hz	50 to 100 Hz (and above)					
8 mm/s	12.5 mm/s	20 mm/s					

Hours of Work

The proposed general construction hours are 07:00 to 19:00hrs, Monday to Friday and 08:00 to 13:00 on Saturdays. However, there are also weekday evening works proposed (19:00 to 23:00hrs).

Weekday evening activities should be significantly reduced and generally only involve internal activities and concrete pouring which will be required during certain phases of the development. As a result, noise emissions from evening activities are expected to be significantly lower than for other general daytime activities.

Best Practice Guidelines for the Control of Noise & Vibration

BS5228 includes guidance on several aspects of construction site mitigation measures, including, but not limited to:

- selection of quiet plant;
- · control of noise sources;
- · screening;
- hours of work;
- liaison with the public, and;
- monitoring.

Detailed comment is offered on these items in the following paragraphs. Noise and vibration control measures that will be considered include the selection of suitable plant, enclosures and screens around noise sources, limiting the hours of work and monitoring.

Selection of Quiet Plant

This practice is recommended in relation to sites with static plant such as compressors and generators. It is recommended that these units be supplied with manufacturers' proprietary acoustic enclosures where possible. The potential for any item of plant to generate noise will be assessed prior to the item being brought onto the site. The least noisy item should be selected wherever possible. Should a particular item of plant already on the site be found to generate high noise levels, the first action should be to identify whether or not said item can be replaced with a quieter alternative.

General Comments on Noise Control at Source

If replacing a noisy item of plant is not a viable or practical option, consideration should be given to noise control "at source". This refers to the modification of an item of plant or the application of improved sound reduction methods in consultation with the supplier. For example, resonance effects in panel work or cover plates can be reduced through stiffening or application of damping compounds; rattling and grinding noises can often be controlled by fixing resilient materials in between the surfaces in contact.

BS5228 states that "as far as reasonably practicable sources of significant noise should be enclosed". In applying this guidance, constraints such as mobility, ventilation, access and safety must be taken into account. Items suitable for enclosure include pumps and generators. Demountable enclosures will also be used to screen operatives using hand tools and will be moved around site as necessary.

In practice, a balance may need to be struck between the use of all available techniques and the resulting costs of doing so. As with Ireland's Environmental Protection Act legislation, we propose that the concept of

"best available techniques not entailing excessive cost" (BATNEEC) be adopted. Furthermore, proposed noise control techniques should be evaluated in light of their potential effect on occupational safety etc. BS5228 makes a number of recommendations in relation to "use and siting of equipment". These are all directly relevant and hence are reproduced in full. These recommendations will be adopted on site.

"Plant should always be used in accordance with manufacturers' instructions. Care should be taken to site equipment away from noise-sensitive areas. Where possible, loading and unloading should also be carried out away from such areas. Special care will be necessary when work has to be carried out at night.

Circumstances can arise when night-time working is unavoidable. Bearing in mind the special constraints under which such work has to be carried out, steps should be taken to minimise disturbance to occupants of nearby premises.

Machines such as cranes that may be in intermittent use should be shut down between work periods or should be throttled down to a minimum. Machines should not be left running unnecessarily, as this can be noisy and waste energy.

Plant known to emit noise strongly in one direction should, when possible, be orientated so that the noise is directed away from noise-sensitive areas. Attendant operators of the plant can also benefit from this acoustical phenomenon by sheltering, when possible, in the area with reduced noise levels.

Acoustic covers to engines should be kept closed when the engines are in use and idling. The use of compressors that have effective acoustic enclosures and are designed to operate when their access panels are closed is recommended.

Materials should be lowered whenever practicable and should not be dropped. The surfaces on to which the materials are being moved could be covered by resilient material."

All items of plant should be subject to regular maintenance. Such maintenance can prevent unnecessary increases in plant noise and can serve to prolong the effectiveness of noise control measures.

Screening

Typically screening is an effective method of reducing the noise level at a receiver location and can be used successfully as an additional measure to all other forms of noise control. The effectiveness of a noise screen will depend on the height and length of the screen and its position relative to both the source and receiver.

The length of the screen should in practice be at least five times the height, however, if shorter sections are necessary then the ends of the screen should be bent around the source. The height of any screen should be such that there is no direct line of sight between the source and the receiver.

BS5228 states that on level sites the screen should be placed as close as possible to either the source or the receiver. The construction of the barrier should be such that there are no gaps or openings at joints in the screen material. In most practical situations the effectiveness of the screen is limited by the sound transmission over the top of the barrier rather than the transmission through the barrier itself. In practice screens constructed of materials with a mass per unit of surface area greater than 7 kg/m² will give adequate sound insulation performance.

In addition, careful planning of the site layout should also be considered. The placement of site buildings such as offices and stores and in some instances materials such as topsoil or aggregate can provide a degree of noise screening if placed between the source and the receiver.

Vibration

The vibration from construction activities will be limited to the values set out in Table 2. It should be noted that these limits are not absolute, but provide guidance as to magnitudes of vibration that are very unlikely to cause cosmetic damage. Magnitudes of vibration slightly greater than those in the table are normally unlikely to cause cosmetic damage, but construction work creating such magnitudes should proceed with caution. Where there is existing damage, these limits may need to be reduced by up to 50%.

Liaison with the Public

The Contractor will provide proactive community relations and will notify the public and sensitive premises before the commencement of any works forecast to generate appreciable levels of noise or vibration, explaining the nature and duration of the works. The Contractor will distribute information circulars informing people of the progress of works and any likely periods of significant noise and vibration.

A designated noise liaison should be appointed to site during construction works. Any complaints should be logged and followed up in a prompt fashion. In addition, prior to particularly noisy construction activity, e.g. rock breaking, piling, etc., the site contact should inform the nearest noise sensitive locations of the time and expected duration of the works.

Noise Monitoring

During the construction phase consideration should be given to noise monitoring at the nearest sensitive locations.

Noise monitoring should be conducted in accordance with the International Standard ISO 1996: 2007: Acoustics – Description, measurement and assessment of environmental noise and be located a distance of greater than 3.5m away from any reflective surfaces, e.g. walls, in order to ensure a free-field measurement without any influence from reflected noise sources.

Vibration Monitoring

During the construction phase consideration should be given to vibration monitoring at the nearest sensitive locations.

Vibration monitoring should be conducted in accordance with BS7385-1 (1990) Evaluation and measurement for vibration in buildings — Part 1: Guide for measurement of vibrations and evaluation of their effects on buildings or BS6841 (1987) Guide to measurement and evaluation of human exposure to whole-body mechanical vibration and repeated shock.

The mounting of the transducer to the vibrating structure should comply with BS ISO 5348:1998 *Mechanical vibration and shock – Mechanical mounting of accelerometers*. In summary, the following ideal mounting conditions apply:

- the transducer and its mountings are as rigid as possible;
- the mounting surfaces should be as clean and flat as possible;
- simple symmetric mountings are best, and;
- the mass of the mounting should be small in comparison to that of the structure under test.

In general the transducer will be fixed to the floor of a building or concrete base on the ground using expansion bolts. In instances where the vibration monitor will be placed outside of a building a flat and level concrete base with dimensions of approximately 1m x 1m x 0.1m will be required.

Appendix 9.4 Noise modelling details

Noise model

A 3D computer-based prediction model has been prepared in order to quantify the noise level associated with the operation of the proposed building. This section discusses the methodology behind the noise modelling process.

DGMR iNoise

Proprietary noise calculation software has been used for the purposes of this modelling exercise. The selected software, DGMR iNoise, calculates noise levels in accordance with ISO 9613: Acoustics – Attenuation of sound during propagation outdoors, Part 2: General method of calculation, 1996.

DGMR iNoise is a proprietary noise calculation package for computing noise levels in the vicinity of noise sources. Predictor calculates noise levels in different ways depending on the selected prediction standard. In general, however, the resultant noise level is calculated taking into account a range of factors affecting the propagation of sound, including:

- the magnitude of the noise source in terms of A weighted sound power levels (LwA);
- · the distance between the source and receiver;
- · the presence of obstacles such as screens or barriers in the propagation path;
- · the presence of reflecting surfaces;
- the hardness of the ground between the source and receiver;
- · Attenuation due to atmospheric absorption; and
- Meteorological effects such as wind gradient, temperature gradient and humidity (these have significant impact at distances greater than approximately 400m).

Brief description of ISO9613-2: 1996

ISO9613-2:1996 calculates the noise level based on each of the factors discussed previously. However, the effect of meteorological conditions is significantly simplified by calculating the average downwind sound pressure level, L_{AT}(DW), for the following conditions:

- wind direction at an angle of ±45° to the direction connecting the centre of the dominant sound source and the centre of the specified receiver region with the wind blowing from source to receiver, and;
- wind speed between approximately 1 ms⁻¹ and 5 ms⁻¹, measured at a height of 3 m to 11 m above the ground.

The equations and calculations also hold for average propagation under a well-developed moderate ground based temperature inversion, such as commonly occurs on clear calm nights.

The basic formula for calculating LAT(DW) from any point source at any receiver location is given by:

$$L_{fT}(DW) = L_W + D_C - A$$
 Eqn. A

Where:

L_{IT}(DW) is an octave band centre frequency component of L_{AT}(DW) in dB relative to 2x10⁻⁵Pa;

Lw is the octave band sound power of the point source;

D_c is the directivity correction for the point source;

A is the octave band attenuation that occurs during propagation, namely attenuation due to geometric divergence, atmospheric absorption, ground effect, barriers and miscellaneous other effects.

The estimated accuracy associated with this methodology is shown in Table A below:

Table A Estimated accuracy for broadband noise of LAT(DW)

Unight h*	Dist	ance, d [†]
Height, h	0 < d < 100 m	100 m < d < 1,000 m
0 <h<5m< td=""><td>±3dB</td><td>±3dB</td></h<5m<>	±3dB	±3dB
5m <h<30m< td=""><td>±1dB</td><td>±3dB</td></h<30m<>	±1dB	±3dB

^{*} h is the mean height of the source and receiver. † d is the mean distance between the source and receiver.

Input data and assumptions

The noise model has been constructed using data from various source as follows:

Site Layout The general site layout has been obtained from the drawings forwarded by Henry J Lyons

Architects.

Local Area The location of noise sensitive locations has been obtained from a combination of site

drawings provided by Henry J Lyons Architects and others obtained from Ordinance Survey

Ireland (OSI).

Heights The heights of buildings on site have been obtained from site drawings forwarded by Henry

J Lyons Architects. Off-site buildings have been assumed to be 6m high with the exception

of industrial buildings where a default height of 15 m has been assumed.

Contours Site ground contours/heights have been obtained from site drawings forwarded by Henry J

Lyons Architects where available.

The final critical aspect of the noise model development is the inclusion of the various plant noise sources. Details are presented in the following section.

Source sound power data

BCEI Engineering has provided noise emission data for the significant external mechanical plant and emergency generators. The information provided is review in Table B below.

Table B Source noise data assumed for assessment (DUB06)

Item		Sound Power Levels dB							
iteill	63	125	250	500	1000	2000	4000	8000	dB(A)
Condenser Left Side	86	83	74	70	64	62	61	55	73
Condenser Right Side	86	83	74	70	64	62	61	55	73
Condenser Front (Evaporator)	84	81	72	68	62	60	59	53	71
Condenser Rear (Condenser)	86	83	74	70	65	62	61	55	73
Condenser Top	90	87	78	74	69	66	65	59	77
Gen. Front Note B	100.8	108.7	92.4	90.2	78.9	73	73.7	67.8	64
Gen. Rear Note B	99	107	90.7	88.5	77.2	71.3	72	66.1	62.3
Gen. Sides Note B	102.5	105.3	89	86.8	75.5	69.6	70.3	64.4	60.6
Gen. Exhaust	86	103	86.7	84.5	73.2	67.3	68	62.1	58.3
Transformer Note C	72	40	70	63	66	50	39	36	36

Note A Maximum permissible Sound Power Level Per unit.

Note B <u>Dub 05 generators are assumed to be attenuated to achieve max. 75dB(A) at 1m.</u>

Note C Transformer noise level advised by Ethos Engineering and typical transformer spectrum from AWN database has

been assumed for assessment purposes.

It has been advised that significant noise emissions are not associated with the proposed substations related to the development.

Figure A presents a 3D render of the developed site noise model.

N.B. These estimates have been made from situations where there are no effects due to reflections or attenuation due to screening.

Figure A Images of Developed Noise Model – View of model prior to DUB06 being inserted for context

Note in relation to the emergency diesel generators screening to these elements of plant are to be formed from an acoustic louvre which offers the following sound insertion loss. The height of the screen is at least 0.5m above the top of the generator installations to be located to their north, west and south.

It has been advised that intake and exhaust louvres to the building will be some 3.5 m wide and 5 m high (i.e. some 15 m²). Based on this knowledge and the extent of the buildings shown on masterplan drawings developed to date the following maximum sound power levels for the louvres opes have been estimated:

Table C Assumed Louvre Sound Power Level

Course	L _{wA} - Octave Band Centre Frequency						dB		
Source	63	125	250	500	1k	2k	4k	8k	(A)
Intake / Exhaust per Louvre	71	76	66	58	59	60	64	65	78

The above noise level equates to a sound pressure level of some 50dB(A) at a distance of 10m.

In terms of the walls and roof of the generator halls, is assumed that detailed design will result in sound power levels per m^2 of the element as detailed in Table D.

Table D Assumed Louvre Sound Power Level – Walls & Roof per m²

Course	L _{wA} - Octave Band Centre Frequency							dB	
Source	63	125	250	500	1k	2k	4k	8k	(A)
Wall / Roof per m ²	52	50	50	40	30	20	20	20	45

A radiator is located 1.5 m above the roof of the building with the following noise rating associated with it as extracted from the supplied data sheet¹⁵:

Table E Assumed Radiator LwA Level – Gas Generation (Cummings Data)

Sauras	L _{pA} - Octave Band Centre Frequency							dB	
Source	63	125	250	500	1k	2k	4k	8k	(A)
Radiators	62	69	72	78	80	76	70	61	83

It is advised generator exhaust stacks will need to be attenuated to achieve a sound pressure level of no more than 65 dB(A) at 1 m. Based on this we have assumed a sound power level of some 76 dB(A) in relation to these sources.

Appendix 9.5 - Modelling calculation parameters

Prediction calculations for noise emissions have been conducted in accordance with ISO 9613: Acoustics – Attenuation of sound during propagation outdoors, Part 2: General method of calculation, 1996. The following are the main aspects that have been considered in terms of the noise predictions presented in this instance.

Directivity Factor.

The directivity factor (D) allows for an adjustment to be made where the sound radiated in the direction of interest is higher than that for which the sound power level is specified. In this case the sound power level is measures in a down wind direction, corresponding to the worst case propagation conditions and needs no further adjustment.

Ground Effect:

Ground effect is the result of sound reflected by the ground interfering with the sound propagating directly from source to receiver. The prediction of ground effects is inherently complex and depend on source height receiver height propagation height between the source and receiver and the ground conditions. The ground conditions are described according to a variable defined as G, which varies between 0.0 for hard ground (including paving, ice concrete) and 1.0 for soft ground (includes ground covered by grass trees or other vegetation) Our predictions have been carried out using various source height specific to each plant item, a receiver heights of 1.6m for single storey properties and 4m for double. An assumed ground factor of G = 0.8 has been applied off site. Noise contours presented in the assessment have been predicted to a height of 4m in all instances.

Geometrical Divergence

This term relates to the spherical spreading in the free-field from a point sound source resulting in attenuation depending on distance according to the following equation:

 $A_{geo} = 20 \times log(distance from source in meters) + 11$

Atmospheric Absorption

Sound propagation through the atmosphere is attenuated by the conversion of the sound energy into heat. This attenuation is dependent on the temperature and relative humidity of the air through which the sound is travelling and is frequency dependent with increasing attenuation towards higher frequencies. In these predictions a temperature of 10°C and a relative humidity of 70% have been used, which give relativity low levels of atmosphere attenuation and corresponding worst case noise predictions.

Table A Atmospheric Attenuation Assumed for Noise Calculations (dB per km)

Temp	%			Octave	e Band Centi	re Frequenci	es (Hz)		
(°C)	Humidity	63	125	250	500	1k	2k	4k	8k
10	70	0.12	0.41	1.04	1.92	3.66	9.70	33.06	118.4

Barrier Attenuation

The effect of any barrier between the noise source and the receiver position is that noise will be reduced according to the relative heights of the source, receiver and barrier and the frequency spectrum of the noise.

CHAPTER 10 – AIR QUALITY AND CLIMATE

Appendix 10.1 Description of the AERMOD model

The AERMOD dispersion model has been developed in part by the U.S. Environmental Protection Agency (USEPA, 2021). The model is a steady-state Gaussian model used to assess pollutant concentrations associated with industrial sources. The model is an enhancement on the Industrial Source Complex-Short Term 3 (ISCST3) model which has been widely used for emissions from industrial sources.

Improvements over the ISCST3 model include the treatment of the vertical distribution of concentration within the plume. ISCST3 assumes a Gaussian distribution in both the horizontal and vertical direction under all weather conditions. AERMOD with PRIME, however, treats the vertical distribution as non-Gaussian under convective (unstable) conditions while maintaining a Gaussian distribution in both the horizontal and vertical direction during stable conditions. This treatment reflects the fact that the plume is skewed upwards under convective conditions due to the greater intensity of turbulence above the plume than below. The result is a more accurate portrayal of actual conditions using the AERMOD model. AERMOD also enhances the turbulence of night-time urban boundary layers thus simulating the influence of the urban heat island.

In contrast to ISCST3, AERMOD is widely applicable in all types of terrain. Differentiation of the simple versus complex terrain is unnecessary with AERMOD. In complex terrain, AERMOD employs the dividing-streamline concept in a simplified simulation of the effects of plume-terrain interactions. In the dividing-streamline concept, flow below this height remains horizontal, and flow above this height tends to rise up and over terrain. Extensive validation studies have found that AERMOD (precursor to AERMOD with PRIME) performs better than ISCST3 for many applications and as well or better than CTDMPLUS for several complex terrain data sets (USEPA, 1999).

Due to the proximity to surrounding buildings, the PRIME (Plume Rise Model Enhancements) building downwash algorithm has been incorporated into the model to determine the influence (wake effects) of these buildings on dispersion in each direction considered. The PRIME algorithm takes into account the position of the stack relative to the building in calculating building downwash. In the absence of the building, the plume from the stack will rise due to momentum and/or buoyancy forces. Wind streamlines act on the plume leads to the bending over of the plume as it disperses. However, due to the presence of the building, wind streamlines are disrupted leading to a lowering of the plume centreline.

When there are multiple buildings, the building tier leading to the largest cavity height is used to determine building downwash. The cavity height calculation is an empirical formula based on building height, the length scale (which is a factor of building height & width) and the cavity length (which is based on building width, length and height). As the direction of the wind will lead to the identification of differing dominant tiers, calculations are carried out in intervals of 10 degrees.

In PRIME, the nature of the wind streamline disruption as it passes over the dominant building tier is a function of the exact dimensions of the building and the angle at which the wind approaches the building. Once the streamline encounters the zone of influence of the building, two forces act on the plume. Firstly, the disruption caused by the building leads to increased turbulence and enhances horizontal and vertical dispersion. Secondly, the streamline descends in the lee of the building due to the reduced pressure and drags the plume (or part of) nearer to the ground, leading to higher ground level concentrations. The model calculates the descent of the plume as a function of the building shape and, using a numerical plume rise model, calculates the change in the plume centreline location with distance downwind.

The immediate zone in the lee of the building is termed the cavity or near wake and is characterised by high intensity turbulence and an area of uniform low pressure. Plume mass captured by the cavity region is reemitted to the far wake as a ground-level volume source. The volume source is located at the base of the lee wall of the building, but is only evaluated near the end of the near wake and beyond. In this region, the disruption caused by the building downwash gradually fades with distance to ambient values downwind of the building.

AERMOD has made substantial improvements in the area of plume growth rates in comparison to ISCST3 (USEPA, 2004a, 2009). ISCST3 approximates turbulence using six Pasquill-Gifford-Turner Stability Classes and bases the resulting dispersion curves upon surface release experiments. This treatment, however, cannot explicitly account for turbulence in the formulation. AERMOD is based on the more realistic modern planetary boundary layer (PBL) theory which allows turbulence to vary with height. This use of turbulence-based plume growth with height leads to a substantial advancement over the ISCST3 treatment.

Improvements have also been made in relation to mixing height (USEPA, 2004a, 2009). The treatment of mixing height by ISCST3 is based on a single morning upper air sounding each day. AERMOD, however, calculates mixing height on an hourly basis based on the morning upper air sounding and the surface energy balance, accounting for the solar radiation, cloud cover, reflectivity of the ground and the latent heat due to evaporation from the ground cover. This more advanced formulation provides a more realistic sequence of the diurnal mixing height changes.

AERMOD also has the capability of modelling both unstable (convective) conditions and stable (inversion) conditions. The stability of the atmosphere is defined by the sign of the sensible heat flux. Where the sensible heat flux is positive, the atmosphere is unstable whereas when the sensible heat flux is negative the atmosphere is defined as stable. The sensible heat flux is dependent on the net radiation and the available surface moisture (Bowen Ratio). Under stable (inversion) conditions, AERMOD has specific algorithms to account for plume rise under stable conditions, mechanical mixing heights under stable conditions and vertical and lateral dispersion in the stable boundary layer.

AERMOD also contains improved algorithms for dealing with low wind speed (near calm) conditions. As a result, AERMOD can produce model estimates for conditions when the wind speed may be less than 1 m/s, but still greater than the instrument threshold.

Appendix 10.2 Description of AERMET

AERMOD incorporates a meteorological pre-processor AERMET PRO (USEPA 2021). AERMET PRO allows AERMOD to account for changes in the plume behaviour with height. AERMET PRO calculates hourly boundary layer parameters for use by AERMOD, including friction velocity, Monin-Obukhov length, convective velocity scale, convective (CBL) and stable boundary layer (SBL) height and surface heat flux. AERMOD uses this information to calculate concentrations in a manner that accounts for changes in dispersion rate with height, allows for a non-Gaussian plume in convective conditions, and accounts for a dispersion rate that is a continuous function of meteorology.

The AERMET PRO meteorological pre-processor requires the input of surface characteristics, including surface roughness (z_0), Bowen Ratio and albedo by sector and season, as well as hourly observations of wind speed, wind direction, cloud cover, and temperature. A morning sounding from a representative upper air station, latitude, longitude, time zone, and wind speed threshold are also required.

Two files are produced by AERMET PRO for input to the AERMOD dispersion model. The surface file contains observed and calculated surface variables, one record per hour. The profile file contains the observations made at each level of a meteorological tower, if available, or the one-level observations taken from other representative data, one record level per hour.

From the surface characteristics (i.e. surface roughness, albedo and amount of moisture available (Bowen Ratio)) AERMET PRO calculates several boundary layer parameters that are important in the evolution of the boundary layer, which, in turn, influences the dispersion of pollutants. These parameters include the surface friction velocity, which is a measure of the vertical transport of horizontal momentum; the sensible heat flux, which is the vertical transport of heat to/from the surface; the Monin-Obukhov length which is a stability parameter relating the surface friction velocity to the sensible heat flux; the daytime mixed layer height; the nocturnal surface layer height and the convective velocity scale which combines the daytime mixed layer height and the sensible heat flux. These parameters all depend on the underlying surface.

The values of albedo, Bowen Ratio and surface roughness depend on land-use type (e.g., urban, water, cultivated land etc) and vary with seasons and wind direction. The assessment of appropriate land-use type was carried out to a distance of 10km from the location of the meteorological station in line with USEPA recommendations (USEPA 2005) for albedo and Bowen ratio with a 1km geometric determination undertaken for the surface roughness. In relation to wind direction, a minimum sector arc of 30 degrees is recommended.

Surface roughness

Surface roughness length is the height above the ground at which the wind speed goes to zero. Surface roughness length is defined by the individual elements on the landscape such as trees and buildings. In order to determine surface roughness length, the USEPA recommends that a representative length be defined for each sector, based on geometric mean of the inverse distance area-weighted land use within the sector, by using the eight land use categories outlined by the USEPA. The area-weighted surface roughness length derived from the land use classification within a radius of 1km from Casement Aerodrome is shown in Table A10.1.

Table A10.1 Surface Roughness based on an inverse distance area-weighted average of the land use within a 1km radius of Casement Aerodrome.

Sector	Area Weighted Land Use Classification	Spring	Summer	Autumn	Winter ^{Note 1}
0-360	100% Grassland	0.050	0.100	0.010	0.010

Note 1:

Winter defined as periods when surfaces covered permanently by snow whereas autumn is defined as periods when freezing conditions are common, deciduous trees are leafless and no snow is present (Iqbal (1983)). Thus for the current location autumn more accurately defines "winter" conditions at the proposed facility.

Albedo

Noon-time Albedo is the fraction of the incoming solar radiation that is reflected from the ground when the sun is directly overhead. Albedo is used in calculating the hourly net heat balance at the surface for calculating hourly values of Monin-Obuklov length. The area-weighted arithmetic mean albedo derived from the land use classification over a 10km x 10km area centred on Casement Aerodrome is shown in Table A10.2.

Table A10.2 Albedo based on an area-weighted arithmetic mean of the land use over a 10km x 10km area centred on Casement Aerodrome.

Area Weighted Land Use Classification	Spring	Summer	Autumn	Winter ^{Note1}	
0.5% Water, 30% Urban, 0.5% Coniferous Forest	0.155	0.180	0.107	0.187	
38% Grassland, 19% Cultivated Land	0.155	0.160	0.187	0.167	

Note 1:

For the current location autumn more accurately defines "winter" conditions at the proposed facility.

Bowen Ratio

The Bowen ratio is a measure of the amount of moisture at the surface of the earth. The presence of moisture affects the heat balance resulting from evaporative cooling which, in turn, affects the Monin-Obukhov length which is used in the formulation of the boundary layer. The area-weighted geometric mean Bowen ratio derived from the land use classification over a 10km x 10km area centered on Casement Aerodrome is shown in Table A10.3

Table A10.3 Bowen ratio based on an area-weighted geometric mean of the land use over a 10km x 10km area centred on Casement Aerodrome.

Area Weighted Land Use Classification	Spring	Summer	Autumn	Winter ^{Note1}
0.5% Water, 30% Urban, 0.5% Coniferous Forest	0.549	1.06	1.202	1.202
38% Grassland, 19% Cultivated Land	0.549	1.00	1.202	1.202

Note 1:

For the current location autumn more accurately defines "winter" conditions at the proposed facility.

CHAPTER 11 - LANDSCAPE AND VISUAL IMPACT

Appendix 11.1 Proposed Landscape plan

Appendix 11.2 Tree survey

Arboricultural Report
Trees at Proposed Site
EdgeConneX
within the townland of Ballymakaily,
West of Newcastle Road (R120),
Lucan
Co. Dublin
August 2022

The Tree File Ltd Consulting Arborists Ashgrove House 26 Foxrock Court Dublin 18 D18 R2K1 086-3819011

©The Tree File Ltd 2022

Contents

Section	Subject
1	Report Summary
2	Introduction
3	Site Description
4	Pre-Development Arboricultural Scenario
5	Planning Scenario in Respect of Tree
6	Other Legislative and Legal Constraints
7	Construction Activities and their Effect on Trees
8	Nature of Project Works
9	Development Related Impacts and Concerns
10	Design Iteration and Arboricultural Considerations
11	Identification of Arboricultural Impacts on Trees
12	Tree Retention and Loss
13	Tree Protection Within the Scope of a Development
14	Preliminary Management Recommendations
15	Bibliography
Al	Appendix A1 – Preliminary Arboricultural Method Statement (To be read with "Tree Protection Plan" drawing)
A2	Appendix A2 - Tree Survey Table 1 - Tree Survey Data

Associated Drawings

This report is for reading in conjunction with the drawings noted below

1)	<u>Drawing Title</u> EdgeConneX Tree Constraints Plan	Drawing Subject Tree Constraints Plan A plan depicting the predevelopment location, size, calculated constraints, and simplified tree quality category system
2)	EdgeConneX Tree Impacts Plan	Tree Impacts Plan This plan represents the effects of the proposed development works on the above tree population and depicts trees to be retained and removed.
3)	EdgeConneX Tree Protection Plan	Tree Protection Plan This plan depicts the nature, location and extent of tree protection measures required for sustainable tree retention.